2019-2020年高中數(shù)學必修2點到直線的距離公式.doc
《2019-2020年高中數(shù)學必修2點到直線的距離公式.doc》由會員分享,可在線閱讀,更多相關《2019-2020年高中數(shù)學必修2點到直線的距離公式.doc(3頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學必修2點到直線的距離公式三維目標:知識與技能:1. 理解點到直線距離公式的推導,熟練掌握點到直線的距離公式;能力和方法: 會用點到直線距離公式求解兩平行線距離情感和價值:1.認識事物之間在一定條件下的轉化。用聯(lián)系的觀點看問題教學重點:點到直線的距離公式教學難點:點到直線距離公式的理解與應用.教學方法:學導式教 具:多媒體、實物投影儀教學過程一、情境設置,導入新課:前面幾節(jié)課,我們一起研究學習了兩直線的平行或垂直的充要條件,兩直線的夾角公式,兩直線的交點問題,兩點間的距離公式。逐步熟悉了利用代數(shù)方法研究幾何問題的思想方法.這一節(jié),我們將研究怎樣由點的坐標和直線的方程直接求點P到直線的距離。 用POWERPOINT打出平面直角坐標系中兩直線,進行移動,使學生回顧兩直線的位置關系,且在直線上取兩點,讓學生指出兩點間的距離公式,復習前面所學。要求學生思考一直線上的計算?能否用兩點間距離公式進行推導?兩條直線方程如下:. 二、講解新課:1點到直線距離公式:點到直線的距離為: (1)提出問題在平面直角坐標系中,如果已知某點P的坐標為,直線0或B0時,以上公式,怎樣用點的坐標和直線的方程直接求點P到直線的距離呢?學生可自由討論。(2)數(shù)行結合,分析問題,提出解決方案學生已有了點到直線的距離的概念,即由點P到直線的距離d是點P到直線的垂線段的長.這里體現(xiàn)了“畫歸”思想方法,把一個新問題轉化為 一個曾今解決過的問題,一個自己熟悉的問題。畫出圖形,分析任務,理清思路,解決問題。方案一:設點P到直線的垂線段為PQ,垂足為Q,由PQ可知,直線PQ的斜率為(A0),根據(jù)點斜式寫出直線PQ的方程,并由與PQ的方程求出點Q的坐標;由此根據(jù)兩點距離公式求出PQ,得到點P到直線的距離為d 此方法雖思路自然,但運算較繁.下面我們探討別一種方法方案二:設A0,B0,這時與軸、軸都相交,過點P作軸的平行線,交于點;作軸的平行線,交于點,由得.所以,PPSS由三角形面積公式可知:SPPS所以可證明,當A=0時仍適用這個過程比較繁瑣,但同時也使學生在知識,能力。意志品質(zhì)等方面得到了提高。3例題應用,解決問題。例1 求點P=(-1,2)到直線 3x=2的距離。解:d=例2 已知點A(1,3),B(3,1),C(-1,0),求三角形ABC的面積。解:設AB邊上的高為h,則S= ,AB邊上的高h就是點C到AB的距離。AB邊所在直線方程為即x+y-4=0。點C到X+Y-4=0的距離為hh=,因此,S=通過這兩道簡單的例題,使學生能夠進一步對點到直線的距離理解應用,能逐步體會用代數(shù)運算解決幾何問題的優(yōu)越性。4拓展延伸,評價反思。(1) 應用推導兩平行線間的距離公式已知兩條平行線直線和的一般式方程為:,:,則與的距離為證明:設是直線上任一點,則點P0到直線的距離為又 即,d 的距離.解法一:在直線上取一點P(,0),因為 例3 求兩平行線:,:,所以點P到的距離等于與的距離.于是解法二:又.由兩平行線間的距離公式得 四、課堂練習:1, 已知一直線被兩平行線3x+4y-7=0與3x+4y+8=0所截線段長為3。且該直線過點(2,3),求該直線方程。五、小結 :點到直線距離公式的推導過程,點到直線的距離公式,能把求兩平行線的距離轉化為點到直線的距離公式六、課后作業(yè):1.求點P(2,-1)到直線2330的距離.2.已知點A(,6)到直線32的距離d=4,求的值:3.已知兩條平行線直線和的一般式方程為:,:,則與的距離為七板書設計:略- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 2019 2020 年高 數(shù)學 必修 直線 距離 公式
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權,請勿作他用。
鏈接地址:http://italysoccerbets.com/p-2615727.html