2019-2020年高中數(shù)學(xué)知識精要 14.平面向量教案 新人教A版.doc
《2019-2020年高中數(shù)學(xué)知識精要 14.平面向量教案 新人教A版.doc》由會員分享,可在線閱讀,更多相關(guān)《2019-2020年高中數(shù)學(xué)知識精要 14.平面向量教案 新人教A版.doc(5頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學(xué)知識精要 14.平面向量教案 新人教A版1、向量有關(guān)概念:(1)向量的概念:既有大小又有方向的量,注意向量和數(shù)量的區(qū)別。向量常用有向線段來表示,注意不能說向量就是有向線段,為什么?(向量可以平移)。如已知A(1,2),B(4,2),則把向量按向量(1,3)平移后得到的向量是_(答:(3,0)(2)零向量:長度為0的向量叫零向量,記作:,注意零向量的方向是任意的;(3)單位向量:給定一個非零向量,與同向且長度為1的向量叫向量的單位向量. 的單位向量是;(4)相等向量:長度相等且方向相同的兩個向量叫相等向量,相等向量有傳遞性;(5)平行向量(也叫共線向量):如果向量的基線互相平行或重合則稱這些向量共線或平行,記作:,規(guī)定零向量和任何向量平行。提醒:相等向量一定是共線向量,但共線向量不一定相等;兩個向量平行與與兩條直線平行是不同的兩個概念:兩個平行向量的基線平行或重合, 但兩條直線平行不包含兩條直線重合;平行向量無傳遞性?。ㄒ驗橛?;三點共線共線;(6)相反向量:長度相等方向相反的向量叫做相反向量。的相反向量是。如下列命題:(1)若,則。(2)兩個向量相等的充要條件是它們的起點相同,終點相同。(3)若,則是平行四邊形。(4)若是平行四邊形,則。(5)若,則。(6)若,則。其中正確的是_(答:(4)(5)2、向量的表示方法:(1)幾何表示法:用帶箭頭的有向線段表示,如,注意起點在前,終點在后;(2)符號表示法:用一個小寫的英文字母來表示,如,等;(3)坐標表示法:在平面內(nèi)建立直角坐標系,以與軸、軸方向相同的兩個單位向量,為基底,則平面內(nèi)的任一向量可表示為,稱為向量的坐標,叫做向量的坐標表示。如果向量的起點在原點,那么向量的坐標與向量的終點坐標相同。提醒:向量的起點不在原點,那么向量的坐標與向量的終點坐標就不相同. 如(04年上海卷.文6)已知點A(-1,5)和向量,若,則點B的坐標為 . (5,4)3.平面向量的基本定理:如果e1和e2是同一平面內(nèi)的兩個不共線向量,那么對該平面內(nèi)的任一向量a,有且只有一對實數(shù)、,使a=e1e2,e1、e2稱為一組基底.注:這為我們用向量解決問題提供了一種方向:把參與的向量用一組基底表示出來,使其關(guān)系容易溝通如(1)若,則_(答:);(2)下列向量組中,能作為平面內(nèi)所有向量基底的是 A. B. C. D. (答:B);(3)已知分別是的邊上的中線,且,則可用向量表示為_(答:);(4)已知中,點在邊上,且,則的值是_(答:0)4、實數(shù)與向量的積:實數(shù)與向量的積是一個向量,記作,它的長度和方向規(guī)定如下:當0時,的方向與的方向相同,當0;當與異向時,0。|=|的大小由及的模確定。因此,當,確定時,的符號與大小就確定了。這就是實數(shù)乘向量中的幾何意義。 (2) 若=(),b=(),則(3)如(1)若向量,當_時與共線且方向相同(答:2);(2)已知,且,則x_(答:4);(3)設(shè),則k_時,A,B,C共線(答:2或11)(04年上海卷.理6)已知點,若向量與同向, =,則點B的坐標為 .證明平行問題通常是取得對應(yīng)的線段來構(gòu)造向量,然后證明向量平行9、向量垂直的充要條件: .特別地。如(1)已知,若,則 (答:);(2)以原點O和A(4,2)為兩個頂點作等腰直角三角形OAB,則點B的坐標是_ (答:(1,3)或(3,1);(3)已知向量,且,則的坐標是_ (答:)(2)向量平移具有坐標不變性,可別忘了??!如(1)按向量把平移到,則按向量把點平移到點_(答:(,);(2)函數(shù)的圖象按向量平移后,所得函數(shù)的解析式是,則_(答:)證明垂直問題通常是取得對應(yīng)的線段來構(gòu)造向量,然后證明向量垂直10.向量中一些常用的結(jié)論:(1)一個封閉圖形首尾連接而成的向量和為零向量,要注意運用;(2),特別地,當同向或有;當反向或有;當不共線(這些和實數(shù)比較類似).(3)在中,若,則其重心的坐標為。如若ABC的三邊的中點分別為(2,1)、(-3,4)、(-1,-1),則ABC的重心的坐標為_(答:);為的重心,特別地為的重心;為的垂心;向量所在直線過的內(nèi)心(是的角平分線所在直線);的內(nèi)心;(3)向量中三終點共線存在實數(shù)使得且.如平面直角坐標系中,為坐標原點,已知兩點,若點滿足,其中且,則點的軌跡是_(答:直線AB)- 1.請仔細閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領(lǐng)!既往收益都歸您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高中數(shù)學(xué)知識精要 14.平面向量教案 新人教A版 2019 2020 年高 數(shù)學(xué)知識 精要 14. 平面 向量 教案 新人
鏈接地址:http://italysoccerbets.com/p-2601279.html