2019-2020年高中數(shù)學競賽輔導資料《不等式的應用》.doc
《2019-2020年高中數(shù)學競賽輔導資料《不等式的應用》.doc》由會員分享,可在線閱讀,更多相關《2019-2020年高中數(shù)學競賽輔導資料《不等式的應用》.doc(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學競賽輔導資料不等式的應用1排序不等式(又稱排序原理)設有兩個有序數(shù)組及則(同序和)(亂序和)(逆序和)其中是1,2,n的任一排列.當且僅當或時等號(對任一排列)成立.2應用排序不等式可證明“平均不等式”:設有n個正數(shù)的算術平均數(shù)和幾何平均數(shù)分別是 此外,還有調(diào)和平均數(shù)(在光學及電路分析中要用到,和平方平均(在統(tǒng)計學及誤差分析中用到) 這四個平均值有以下關系. 3應用算術平均數(shù)幾何平均數(shù)不等式,可用來證明下述重要不等式.柯西(Cavchy)不等式:設、,是任意實數(shù),則等號當且僅當為常數(shù),時成立.4利用排序不等式還可證明下述重要不等式.切比雪夫不等式:若, ,則例題講解1求證:2,求證: 3:4設,且各不相同,求證:.5利用基本不等式證明6已知求證:7利用排序不等式證明8證明:對于任意正整數(shù)R,有9n為正整數(shù),證明:例題答案:1. 證明: 評述:(1)本題所證不等式為對稱式(任意互換兩個字母,不等式不變),在因式分解或配方時,往往采用輪換技巧.再如證明時,可將配方為,亦可利用,3式相加證明.(2)本題亦可連用兩次基本不等式獲證.2.分析:顯然不等式兩邊為正,且是指數(shù)式,故嘗試用商較法.不等式關于對稱,不妨,且,都大于等于1.評述:(1)證明對稱不等式時,不妨假定個字母的大小順序,可方便解題. (2)本題可作如下推廣:若 (3)本題還可用其他方法得證。因,同理,另,4式相乘即得證. (4)設例3等價于類似例4可證事實上,一般地有排序不等式(排序原理):設有兩個有序數(shù)組,則(順序和)(亂序和)(逆序和)其中的任一排列.當且僅當或時等號成立.排序不等式應用較為廣泛(其證明略),它的應用技巧是將不等式兩邊轉(zhuǎn)化為兩個有序數(shù)組的積的形式.如.3.思路分析:中間式子中每項均為兩個式子的和,將它們拆開,再用排序不等式證明.不妨設,則(亂序和)(逆序和),同理(亂序和)(逆序和)兩式相加再除以2,即得原式中第一個不等式.再考慮數(shù)組,仿上可證第二個不等式.4.分析:不等式右邊各項;可理解為兩數(shù)之積,嘗試用排序不等式.設的重新排列,滿足,又所以.由于是互不相同的正整數(shù),故從而,原式得證.評述:排序不等式應用廣泛,例如可證我們熟悉的基本不等式,5.思路分析:左邊三項直接用基本不等式顯然不行,考察到不等式的對稱性,可用輪換的方法.;三式相加再除以2即得證.評述:(1)利用基本不等式時,除了本題的輪換外,一般還須掌握添項、連用等技巧.如,可在不等式兩邊同時加上再如證時,可連續(xù)使用基本不等式.(2)基本不等式有各種變式 如等.但其本質(zhì)特征不等式兩邊的次數(shù)及系數(shù)是相等的.如上式左右兩邊次數(shù)均為2,系數(shù)和為1.6. 思路分析:不等式左邊是、的4次式,右邊為常數(shù),如何也轉(zhuǎn)化為、的4次式呢.要證即證評述:(1)本題方法具有一定的普遍性.如已知求證:右側(cè)的可理解為再如已知,求證:+,此處可以把0理解為,當然本題另有簡使證法.(2)基本不等式實際上是均值不等式的特例.(一般地,對于個正數(shù)調(diào)和平均幾何平均算術平均平方平均這四個平均值有以下關系:,其中等號當且僅當時成立.7. 證明: 令則,故可取,使得由排序不等式有:=(亂序和) (逆序和) =n,評述:對各數(shù)利用算術平均大于等于幾何平均即可得,.8. 分析:原不等式等價于,故可設法使其左邊轉(zhuǎn)化為n個數(shù)的幾何平均,而右邊為其算術平均.評述:(1)利用均值不等式證明不等式的關鍵是通過分拆和轉(zhuǎn)化,使其兩邊與均值不等式形式相近.類似可證(2)本題亦可通過逐項展開并比較對應項的大小而獲證,但較繁.9.證明:先證左邊不等式(*)式成立,故原左邊不等式成立.其次證右邊不等式 (*)(*)式恰符合均值不等式,故原不等式右邊不等號成立.- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關 鍵 詞:
- 不等式的應用 2019 2020 年高 數(shù)學 競賽 輔導資料 不等式 應用
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權(quán),請勿作他用。
鏈接地址:http://italysoccerbets.com/p-2488728.html