高考數(shù)學(xué)試題分類匯編—函數(shù).doc
《高考數(shù)學(xué)試題分類匯編—函數(shù).doc》由會員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)試題分類匯編—函數(shù).doc(37頁珍藏版)》請在裝配圖網(wǎng)上搜索。
歡迎光臨 中學(xué)數(shù)學(xué)信息網(wǎng) zxsx127 中學(xué)數(shù)學(xué)信息網(wǎng)系列資料 WWW. Z X S X .COM 版權(quán)所有 中學(xué)數(shù)學(xué)信息網(wǎng) 2012 年高考數(shù)學(xué)試題分類匯編函數(shù) 若實數(shù) x、 y、 m滿足 xym,則稱 x比 y接近 m. (1)若 2比 3 接近 0,求 的取值范圍; (2)對任意兩個不相等的正數(shù) a、 b,證明: 2ab比 3接近 2ab; (3)已知函數(shù) ()fx的定義域 ,DxkZxR.任取 xD, ()f等于 1sinx和1sin 中接近 0 的那個值.寫出函數(shù) ()f的解析式,并指出它的奇偶性、最小正周期、最小值 和單調(diào)性(結(jié)論不要求證明). 解析:(1) x( 2,2); (2) 對任意兩個不相等的正數(shù) a、b,有 2ab, 32aba, 因為 2 3 2| | |()0ab, 所以 | |2|abab,即 a2bab2 比 a3b3 接近 ab; (3) 1sin,(,)() 1|sin|,xkfx xk ,kZ, f(x)是偶函數(shù),f(x )是周期函數(shù),最小正周期 T,函數(shù) f(x)的最小值為 0, 函數(shù) f(x)在區(qū)間 ,)2k單調(diào)遞增,在區(qū)間 (,2k單調(diào)遞減,k Z (2010 湖南文數(shù))21 (本小題滿分 13 分) 已知函數(shù) ()(1)ln5,afxxa其中 a0,且 a-1. ()討論函數(shù) 的單調(diào)性; ()設(shè)函數(shù) 32(2646),1(),1()xxaxaeefgx (e 是自然數(shù)的底數(shù)) 。是否 存在 a,使 在a,-a 上為減函數(shù)?若存在,求 a 的取值范圍;若不存 在,請說明理由。 歡迎光臨 中學(xué)數(shù)學(xué)信息網(wǎng) zxsx127 中學(xué)數(shù)學(xué)信息網(wǎng)系列資料 WWW. Z X S X .COM 版權(quán)所有 中學(xué)數(shù)學(xué)信息網(wǎng) 歡迎光臨 中學(xué)數(shù)學(xué)信息網(wǎng) zxsx127 中學(xué)數(shù)學(xué)信息網(wǎng)系列資料 WWW. Z X S X .COM 版權(quán)所有 中學(xué)數(shù)學(xué)信息網(wǎng) (2010 浙江理數(shù)) (22)(本題滿分 14 分)已知 a是給定的實常數(shù),設(shè)函數(shù)22()(fxaxbe , R, 是 f的一個極大值點 () 求 的取值范圍; ()設(shè) 123,x是 ()fx的 3 個極值點,問是否存在實數(shù) b,可找到 4xR,使得1234, 的某種排列 1234,ii(其中 1234,i= ,)依次成等差數(shù)列?若存在,求 所有的 b及相應(yīng)的 4x;若不存在,說明理由 解析:本題主要考查函數(shù)極值的概念、導(dǎo)數(shù)運算法則、導(dǎo)數(shù)應(yīng)用及等差數(shù)列等基礎(chǔ)知識,同時考 查推理論證能力、分類討論等綜合解題能力和創(chuàng)新意識。 ()解:f(x)=e x(x-a) 2(3)2,abxa 令 2 2()(3),=-a+b4(1)80,gx則 于是,假設(shè) 12,()0.gxx是 的 兩 個 實 根 , 且 (1) 當(dāng) x1=a 或 x2=a 時,則 x=a 不是 f(x)的極值點,此時不合題意。 (2) 當(dāng) x1a 且 x2 a 時,由于 x=a 是 f(x)的極大值點,故 x10 時,令 h (x)=0,解得 x= 24a, 所以當(dāng) 0 x0, h(x)在(0, 2)上遞增。 所以 x 是 h(x)在(0, + )上的唯一極致點,且是極小值點,從而也是 h(x)的 最小值點。 所以 (a)=h( 24)= 2a-aln 24a=2 當(dāng) a 0 時, h(x)=(1/2-2a) /2x0,h(x)在(0,+)遞增,無最小值。 故 h(x) 的最小值 (a)的解析式為 2a(1-ln2a) (ao) (3)由(2)知 (a)=2a(1-ln2a) 則 1( a )=-2ln2a,令 1( a )=0 解得 a =1/2 當(dāng) 01/2 時, 1( a )0,為單調(diào)遞增區(qū)間。 最大值在右端點取到。 max1()2f。 (2010 安徽文數(shù))20.(本小題滿分 12 分) 設(shè)函數(shù) sinco1fxx, 0 x,求函數(shù) fx的單調(diào)區(qū)間與極值。 【命題意圖】本題考查導(dǎo)數(shù)的運算,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與極值的方法,考查綜合應(yīng)用數(shù) 學(xué)知識解決問題的能力. 【解題指導(dǎo)】 (1)對函數(shù) sinco1fxx求導(dǎo),對導(dǎo)函數(shù)用輔助角公式變形,利用 導(dǎo)數(shù)等于 0 得極值點,通過列表的方法考查極值點的兩側(cè)導(dǎo)數(shù)的正負,判斷區(qū)間的單調(diào)性,求極 值. 歡迎光臨 中學(xué)數(shù)學(xué)信息網(wǎng) zxsx127 中學(xué)數(shù)學(xué)信息網(wǎng)系列資料 WWW. Z X S X .COM 版權(quán)所有 中學(xué)數(shù)學(xué)信息網(wǎng) , ()12().423()0()4) xxxx 解 : 由 f=sin-co+1,00 恒成立,求 a 的取值范圍 . 【解析】本小題主要考查曲線的切線方程、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與極值、解不等式等基礎(chǔ) 知識,考查運算能力及分類討論的思想方法.滿分 12 分. 歡迎光臨 中學(xué)數(shù)學(xué)信息網(wǎng) zxsx127 中學(xué)數(shù)學(xué)信息網(wǎng)系列資料 WWW. Z X S X .COM 版權(quán)所有 中學(xué)數(shù)學(xué)信息網(wǎng) ()解:當(dāng) a=1 時,f(x)= 32x1,f(2)=3;f(x)= 23, f(2)=6.所 以曲線 y=f(x)在點(2,f(2) )處的切線方程為 y-3=6(x-2) ,即 y=6x-9. ()解:f(x)= 2()aa.令 f(x)=0,解得 x=0 或 x= 1a. 以下分兩種情況討論: (1) 若 10, 則 ,當(dāng) x 變化時,f(x),f(x)的變化情況如下表: X 2, 0 120, f(x) + 0 - f(x) A極大值 A 當(dāng) 1xfx2, 時 , ( ) 0等價于 5a10,(),820,.f即 解不等式組得-50 等價于 1f(-)20,a 即 2 581-0.a, 解不等式組得 52a或 2.因此 2a5. 綜合(1)和(2) ,可知 a 的取值范圍為 00,從而 -0,Fxe又 所 以 (x)0,從而函數(shù) F(x)在1,+) 是增函數(shù)。 又 F(1)= -1e0, 所 以 1時 , 有 F(x)F(1)=0,即 f(x)g(x). )證明:(1) 若 2 1212(),),.x xx12由 ( ) 及 f(xf則 與 矛 盾 。 (2)若 1()0)x由 ( ) 及 (得 與 矛 盾 。 歡迎光臨 中學(xué)數(shù)學(xué)信息網(wǎng) zxsx127 中學(xué)數(shù)學(xué)信息網(wǎng)系列資料 WWW. Z X S X .COM 版權(quán)所有 中學(xué)數(shù)學(xué)信息網(wǎng) 根據(jù)(1) (2)得 1212()0,.xx不 妨 設(shè) 由()可知, fg,則 )2(= )f-,所以 )2f( )2-,從而 )1f()2f(-x .因為 2,所以 2x,又由()可知函數(shù) f(x)在區(qū)間(-,1)內(nèi)事增函數(shù), 所以 1 ,即 1x2. (2010 福建文數(shù))22 (本小題滿分 14 分) 已知函數(shù) f(x)= 32xab的圖像在點 P(0,f(0))處的切線方程為 y=3x-2 ()求實數(shù) a,b 的值; ()設(shè) g(x)=f(x)+ 1mx是 ,上的增函數(shù)。 (i)求實數(shù) m 的最大值; (ii)當(dāng) m 取最大值時,是否存在點 Q,使得過點 Q 的直線若能與曲線 y=g(x)圍成兩個封閉圖 形,則這兩個封閉圖形的面積總相等?若存在,求出點 Q 的坐標(biāo);若不存在,說明理由。 歡迎光臨 中學(xué)數(shù)學(xué)信息網(wǎng) zxsx127 中學(xué)數(shù)學(xué)信息網(wǎng)系列資料 WWW. Z X S X .COM 版權(quán)所有 中學(xué)數(shù)學(xué)信息網(wǎng) (2010 福建文數(shù))21(本小題滿分 12 分) 某港口 O要將一件重要物品用小艇送到一艘正在航行的輪船上,在小艇出發(fā)時,輪船位于港口 北偏西 30且與該港口相距 20 海里的 A處,并正以 30 海里/小時的航行速度沿正東方向勻 速行駛。假設(shè)該小艇沿直線方向以 海里/小時的航行速度勻速行駛,經(jīng)過 t小時與輪船相遇。 ()若希望相遇時小艇的航行距離最小,則小艇航行速度的大小應(yīng)為多少? ()為保證小艇在 30 分鐘內(nèi)(含 30 分鐘)能與輪船相遇,試確定小艇航行速度的最小值; ()是否存在 ,使得小艇以 海里/小時的航行速度行駛,總能有兩種不同的航行方向與輪船 歡迎光臨 中學(xué)數(shù)學(xué)信息網(wǎng) zxsx127 中學(xué)數(shù)學(xué)信息網(wǎng)系列資料 WWW. Z X S X .COM 版權(quán)所有 中學(xué)數(shù)學(xué)信息網(wǎng) 相遇?若存在,試確定 的取值范圍;若不存在,請說明理由。 歡迎光臨 中學(xué)數(shù)學(xué)信息網(wǎng) zxsx127 中學(xué)數(shù)學(xué)信息網(wǎng)系列資料 WWW. Z X S X .COM 版權(quán)所有 中學(xué)數(shù)學(xué)信息網(wǎng) (2010 全國卷 1 理數(shù))(20)(本小題滿分 12 分) 已知函數(shù) ()ln1fxx. ()若 2a,求 的取值范圍; ()證明: (1)0 xf . (2010 四川文數(shù)) (22) (本小題滿分 14 分) 歡迎光臨 中學(xué)數(shù)學(xué)信息網(wǎng) zxsx127 中學(xué)數(shù)學(xué)信息網(wǎng)系列資料 WWW. Z X S X .COM 版權(quán)所有 中學(xué)數(shù)學(xué)信息網(wǎng) 設(shè) 1 xaf() ( 0且 1a) ,g(x)是 f(x)的反函數(shù). ()求 g; ()當(dāng) 2,6x時,恒有 2()log(1)7atxx成立,求 t 的取值范圍; ()當(dāng) 0a 時,試比較 f(1)+f(2)+f(n)與 4n的大小,并說明理由. 12 歡迎光臨 中學(xué)數(shù)學(xué)信息網(wǎng) zxsx127 中學(xué)數(shù)學(xué)信息網(wǎng)系列資料 WWW. Z X S X .COM 版權(quán)所有 中學(xué)數(shù)學(xué)信息網(wǎng) (2010 湖北文數(shù))21.(本小題滿分 14 分) 設(shè)函數(shù) 321axbcf( ) =,其中 a0,曲線 xyf( ) 在點 P(0, f( ) )處的 切線方程為 y=1 ()確定 b、c 的值 ()設(shè)曲線 yf( ) 在點( 1xf, ( ) )及( 2f, ( ) )處的切線都過點(0,2)證明: 當(dāng) 12x時, 12()()x ()若過點(0,2)可作曲線 yf( ) 的三條不同切線,求 a 的取值范圍。 (2010 湖北文數(shù))19.(本小題滿分 12 分) 已知某地今年年初擁有居民住房的總面積為 a(單位:m 2) ,其中有部分舊住房需要拆除。 當(dāng)?shù)赜嘘P(guān)部門決定每年以當(dāng)年年初住房面積的 10%建設(shè)新住房,同事也拆除面積為 b(單位: 歡迎光臨 中學(xué)數(shù)學(xué)信息網(wǎng) zxsx127 中學(xué)數(shù)學(xué)信息網(wǎng)系列資料 WWW. Z X S X .COM 版權(quán)所有 中學(xué)數(shù)學(xué)信息網(wǎng) m2)的舊住房。 ()分別寫出第一年末和第二年末的實際住房面積的表達式: ()如果第五年末該地的住房面積正好比今年年初的住房面積增加了 30%,則每年拆除 的舊住房面積 b 是多少?(計算時取 1.15=1.6) (2010 山東理數(shù))(22)(本小題滿分 14 分) 已知函數(shù) 1()lnafxx(R. ()當(dāng) 12a時,討論 ()f的單調(diào)性; ()設(shè) ()4.gxb當(dāng) a時,若對任意 1(0,2)x,存在 21,x,使12f ,求實數(shù) 取值范圍. 歡迎光臨 中學(xué)數(shù)學(xué)信息網(wǎng) zxsx127 中學(xué)數(shù)學(xué)信息網(wǎng)系列資料 WWW. Z X S X .COM 版權(quán)所有 中學(xué)數(shù)學(xué)信息網(wǎng) ()當(dāng) 14a時, f(x)在(0,1)上是減函數(shù),在(1,2)上是增函數(shù),所以對任意1(0,2)x , 有 f=-,又已知存在 2,x,使 12()fxg,所以 21()gx,2,x , 即存在 1,,使 21()42gxb,即 29bx,即 92bx17,4 , 所以 2b,解得 4b,即實數(shù) 取值范圍是 ,)。 【命題意圖】本題將導(dǎo)數(shù)、二次函數(shù)、不等式知識有機的結(jié)合在一起,考查了利用導(dǎo)數(shù)研究函數(shù) 的單調(diào)性、利用導(dǎo)數(shù)求函數(shù)的最值以及二次函數(shù)的最值問題,考查了同學(xué)們分類討論的數(shù)學(xué)思想 歡迎光臨 中學(xué)數(shù)學(xué)信息網(wǎng) zxsx127 中學(xué)數(shù)學(xué)信息網(wǎng)系列資料 WWW. Z X S X .COM 版權(quán)所有 中學(xué)數(shù)學(xué)信息網(wǎng) 以及解不等式的能力;考查了學(xué)生綜合運用所學(xué)知識分析問題、解決問題的能力。 (1 )直接利用函數(shù)與導(dǎo)數(shù)的關(guān)系討論函數(shù)的單調(diào)性;(2 )利用導(dǎo)數(shù)求出 ()f的最小值、利用 二次函數(shù)知識或分離常數(shù)法求出 ()gx在閉區(qū)間1,2上的最大值,然后解不等式求參數(shù)。 (2010 湖南理數(shù))20.(本小題滿分 13 分) 已知函數(shù) 2()(,),fxbcR對任意的 x,恒有 ()fxf。 ()證明:當(dāng) 0時, 2fxc; ()若對滿足題設(shè)條件的任意 b,c,不等式 2()()fbMc恒成立,求 M 的 最小值。 解析: (2010 湖北理數(shù))17 (本小題滿分 12 分) 為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層。某幢建筑 歡迎光臨 中學(xué)數(shù)學(xué)信息網(wǎng) zxsx127 中學(xué)數(shù)學(xué)信息網(wǎng)系列資料 WWW. Z X S X .COM 版權(quán)所有 中學(xué)數(shù)學(xué)信息網(wǎng) 物要建造可使用 20 年的隔熱層,每厘米厚的隔熱層建造成本為 6 萬元。該建筑物每年的能源消 耗費用 C(單位:萬元)與隔熱層厚度 x(單位:cm )滿足關(guān)系:C (x)=(01),35kx 若不建隔熱層,每年能源消耗費用為 8 萬元。設(shè) f(x)為隔熱層建造費用與 20 年的能源消耗費用之和。 ()求 k 的值及 f(x)的表達式。 ()隔熱層修建多厚時,總費用 f(x)達到最小,并求最小值。 (2010 福建理數(shù))20 (本小題滿分 14 分) ()已知函數(shù) 3(x)=-f, 其 圖 象 記 為 曲 線 C。 (i)求函數(shù) 的單調(diào)區(qū)間; (ii)證明:若對于任意非零實數(shù) 1x,曲線 C 與其在點 1P(x,f)處的切線交于另一點22P(x,f) ,曲線 C 與其在點 22P(,f)處的切線交于另一點 33(,fx),線段1123 12, ,S與 曲 線 所 圍 成 封 閉 圖 形 的 面 積 分 別 記 為 則 為 定 值 ; ()對于一般的三次函數(shù) 32g(x)=a+bcxd(a0),請 給 出 類 似 于 () (ii)的正確命 題,并予以證明。 【命題意圖】本小題主要考查函數(shù)、導(dǎo)數(shù)、定積分等基礎(chǔ)知識,考查抽象概括能力、運算求解能 力、推理論證能力,考查函數(shù)與方程思想、數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想、特殊與一般思想。 歡迎光臨 中學(xué)數(shù)學(xué)信息網(wǎng) zxsx127 中學(xué)數(shù)學(xué)信息網(wǎng)系列資料 WWW. Z X S X .COM 版權(quán)所有 中學(xué)數(shù)學(xué)信息網(wǎng) 【解析】 () (i)由 3(x)=-f得 2(x)-1f= 3()x+, 當(dāng) 3x(-,)和 ( , ) 時, ()0f; 當(dāng) (-,)時, (x)0,使得 )12h,則稱函數(shù) f具 有性質(zhì) )(aP。 (1)設(shè)函數(shù) xf2ln(1)bx,其中 b為實數(shù)。 (i)求證:函數(shù) )(具有性質(zhì) P; (ii)求函數(shù) )(xf的單調(diào)區(qū)間。 (2)已知函數(shù) xg具有性質(zhì) )2(。給定 1212,x設(shè) m為實數(shù),21)(m , m,且 , 若| )|0, 所以對任意的 都有 (0 x, ()g在 ,)上遞增。 又 1212,)xm。 當(dāng) ,m時, ,且 1212()(),()()xmxxm, 歡迎光臨 中學(xué)數(shù)學(xué)信息網(wǎng) zxsx127 中學(xué)數(shù)學(xué)信息網(wǎng)系列資料 WWW. Z X S X .COM 版權(quán)所有 中學(xué)數(shù)學(xué)信息網(wǎng) 綜合以上討論,得:所求 m的取值范圍是(0,1) 。 (方法二)由題設(shè)知, ()gx的導(dǎo)函數(shù) 2()(1)gxhx,其中函數(shù) ()0hx對于任意的),1(x 都成立。所以,當(dāng) 時, )0,從而 g在區(qū)間 ),1上單 調(diào)遞增。 當(dāng) (0,)m時,有 1211()()mxxmx,12x ,得 2,,同理可得 12(,)x,所以由()g 的單調(diào)性知 ()g、 12(),gx, 從而有| | 21|,符合題設(shè)。 當(dāng) 0m時, 2()()xmxx,1211() ,于是由 1,及 ()gx的單調(diào)性知()gxg ,所以| )(g| )2|,與題設(shè)不符。 當(dāng) m時,同理可得 12,x,進而得| (| )(21x|,與題設(shè)不符。 因此綜合、得所求的 m的取值范圍是(0,1) 。 歡迎光臨 中學(xué)數(shù)學(xué)信息網(wǎng) zxsx127 中學(xué)數(shù)學(xué)信息網(wǎng)系列資料 WWW. Z X S X .COM 版權(quán)所有 中學(xué)數(shù)學(xué)信息網(wǎng)- 1.請仔細閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領(lǐng)!既往收益都歸您。
下載文檔到電腦,查找使用更方便
5 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該PPT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 高考 數(shù)學(xué)試題 分類 匯編 函數(shù)
鏈接地址:http://italysoccerbets.com/p-12738579.html