《2022屆高考數(shù)學(xué)二輪復(fù)習(xí) 第一篇 專題一 高考客觀題的幾種類型 第1講 集合、復(fù)數(shù)與常用邏輯用語限時(shí)訓(xùn)練 理》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022屆高考數(shù)學(xué)二輪復(fù)習(xí) 第一篇 專題一 高考客觀題的幾種類型 第1講 集合、復(fù)數(shù)與常用邏輯用語限時(shí)訓(xùn)練 理(4頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、2022屆高考數(shù)學(xué)二輪復(fù)習(xí) 第一篇 專題一 高考客觀題的幾種類型 第1講 集合、復(fù)數(shù)與常用邏輯用語限時(shí)訓(xùn)練 理【選題明細(xì)表】知識(shí)點(diǎn)、方法題號(hào)集合1,3,4,5復(fù)數(shù)2,6,7,8,9,13常用邏輯用語10,11,12,14,15,16一、選擇題1.(2018豐臺(tái)區(qū)二模)已知A=x|x1,B=x|x2-2x-30,則AB等于(D)(A)x|x-1或x1(B)x|1x3 (D)x|x-1解析:A=x|x1,B=x|x2-2x-30=x|-1x-1.故選D.2.(2018北京卷)在復(fù)平面內(nèi),復(fù)數(shù)的共軛復(fù)數(shù)對(duì)應(yīng)的點(diǎn)位于(D)(A)第一象限(B)第二象限(C)第三象限(D)第四象限解析:=+,其共軛復(fù)數(shù)為
2、-,對(duì)應(yīng)點(diǎn)(,-)位于第四象限.故選D.3.(2018陜西省西工大附中七模)已知集合A=(x,y)|y=ex,xN,yN,B=(x,y)|y=-x2+1,xN,yN,則AB等于(C)(A)(0,1) (B)0,1 (C)(0,1) (D)解析:A=(0,1),而(0,1)B,所以AB=(0,1),故選C.4.(2018河南中原名校質(zhì)檢二)已知集合A=,B= (x,y)|y=3x,則AB的子集的個(gè)數(shù)是(D)(A)1(B)2(C)3(D)4解析:作出橢圓+=1與函數(shù)y=3x的圖象可知,共有兩個(gè)交點(diǎn),即AB中有兩個(gè)元素,其子集有22=4個(gè).故選D.5.(2018河南新鄉(xiāng)模擬)若集合M=x|x2+5x
3、-140,N=x|mxm+3,且MN=,則m的取值范圍為(D)(A)(-10,2)(B)(-,-10)(2,+)(C)-10,2(D)(-,-102,+)解析:由題意,得M=x|-7x2,因?yàn)镸N=,所以m+3-7或m2,得m-10或m2.故選D.6.(2018廣東佛山質(zhì)檢二)復(fù)數(shù)z=+(i為虛數(shù)單位)的共軛復(fù)數(shù)等于(C)(A)1-i(B)1+i(C)1+2i(D)1-2i解析:z=+=+1-i=-i+1-i=1-2i,所以=1+2i.故選C.7.(2018安徽皖南八校4月聯(lián)考)復(fù)數(shù)z=a2-1+(a+1)i為純虛數(shù)(i為虛數(shù)單位),其中aR,則的實(shí)部為(C)(A)-(B)-(C)(D)解析:
4、根據(jù)z=a2-1+(a+1)i為純虛數(shù),可得解得a=1,則= =-i,所以其實(shí)部是,故選C.8.(2018太原三模)若(-1+2i)z=-5i,則|z|的值為(D)(A)3(B)5(C)(D)解析:由(-1+2i)z=-5i,得z=-2+i,則|z|的值為=.故選D.9.(2018安徽江淮十校4月聯(lián)考)已知i2 018(m+ni)=5-4i(m,nR),則關(guān)于復(fù)數(shù)z=m+ni的說法,正確的是(B)(A)復(fù)數(shù)z的虛部為-4(B)|z|=(C)=-5+4i(D)復(fù)數(shù)z所對(duì)應(yīng)的點(diǎn)位于復(fù)平面的第四象限解析:依題意i2 018(m+ni)=5-4i,則-m-ni=5-4i,故m=-5,n=4,故z= -
5、5+4i,故復(fù)數(shù)z的虛部為4,|z|=,=-5-4i,復(fù)數(shù)z所對(duì)應(yīng)的點(diǎn)(-5,4)位于復(fù)平面的第二象限.故選B.10.已知命題p:x0R,-x0+10;命題q:若a.則下列為真命題的是(B)(A)pq(B)pq(C)pq(D)pq解析:x2-x+1=(x-)2+0恒成立,則x0R,-x0+10為真命題;對(duì)于q,當(dāng)a0時(shí),不成立,則q為假命題;分析選項(xiàng)可得:pq,pq,pq都是假命題;pq為真命題.故選B.11.(2018江西九校聯(lián)考)下列命題正確的個(gè)數(shù)是(B)“函數(shù)y=cos2ax-sin2ax的最小正周期為”的充分不必要條件是“a=1”.設(shè)(-1,1,3),則使函數(shù)y=x的定義域?yàn)镽且為奇函
6、數(shù)的所有的值為-1,1,3.已知函數(shù)f(x)=2x+aln x在定義域上為增函數(shù),則a0.(A)1(B)2(C)3(D)0解析:y=cos2ax-sin2ax=cos 2ax最小正周期為,所以=,所以a=1,反過來a=1,y=cos 2ax,最小正周期為,故正確;=-1時(shí),函數(shù)y=x,即y=x-1定義域不是R,故錯(cuò)誤;f(x)=2x+aln x在定義域上為增函數(shù),所以f(x)=2+0恒成立,對(duì)x(0,+),所以a-2x恒成立,所以a0,故正確.總之正確.故選B.12.(2018江西六校聯(lián)考)下列命題中:(1)“x1”是“x21”的充分不必要條件;(2)定義在a,b上的偶函數(shù)f(x)=x2+(a
7、+5)x+b的最小值為5;(3)命題“x0,都有x+2”的否定是“x00,使得x0+1x1或x1”是“x21”的充分不必要條件;(2)因?yàn)閒(x)為偶函數(shù),所以a=-5,因?yàn)槎x區(qū)間為a,b,所以b= 5,因此f(x)=x2+5最小值為5;(3)命題“x0,都有x+2”的否定是“x00,使得x0+2”;(4)由條件得所以所以x0,1.因此正確命題為(1)(2)(4),故選C.二、填空題13.(2018廣東湛江二模)已知i是虛數(shù)單位,復(fù)數(shù)z滿足z-2i=1+zi,則z=.解析:由題意可得z-zi=1+2i,則z=-+i.答案:-+i14.(2018河北石家莊一模)命題p:x01,-2x0-30的
8、否定為.解析:命題p:x01,-2x0-30的否定為p:x1,x2-2x-30.答案:x1,x2-2x-3015.(2018青海西寧一模)命題“x0R,-(m-1)x0+10”為假命題,則實(shí)數(shù)m的取值范圍為.解析:命題“x0R,-(m-1)x0+1,則ab;已知f(x)是f(x)的導(dǎo)函數(shù),若xR,f(x)0,則f(1)f(2)一定成立;命題“x0R,使得-2x0+1,ab+bab+a,則ab,故正確;若f(x)是常函數(shù),則f(1)f(2)不成立,故不正確;命題“x0R,使得-2x0+10”是假命題,則它的否定是真命題,故正確;x1且y1x+y2,反之不成立,則“x1且y1”是“x+y2”的充分不必要條件,故不正確;若實(shí)數(shù)x,y-1,1,則滿足x2+y21的概率為P=1-,故正確.答案: