2019-2020年人教版高中數(shù)學(xué)必修二教案:4-1-2 圓的一般方程.doc
《2019-2020年人教版高中數(shù)學(xué)必修二教案:4-1-2 圓的一般方程.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020年人教版高中數(shù)學(xué)必修二教案:4-1-2 圓的一般方程.doc(7頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年人教版高中數(shù)學(xué)必修二教案:4-1-2 圓的一般方程項(xiàng)目?jī)?nèi)容課題4.1.2 圓的一般方程(1課時(shí))修改與創(chuàng)新教學(xué)目標(biāo)1.在掌握?qǐng)A的標(biāo)準(zhǔn)方程的基礎(chǔ)上,理解記憶圓的一般方程的代數(shù)特征,由圓的一般方程確定圓的圓心、半徑.掌握方程x2y2DxEyF=0表示圓的條件,通過(guò)對(duì)方程x2y2DxEyF=0表示圓的條件的探究,培養(yǎng)學(xué)生探索發(fā)現(xiàn)及分析、解決問(wèn)題的能力.2.能通過(guò)配方等手段,把圓的一般方程化為圓的標(biāo)準(zhǔn)方程.能用待定系數(shù)法和軌跡法求圓的方程,同時(shí)滲透數(shù)形結(jié)合、化歸與轉(zhuǎn)化等數(shù)學(xué)思想方法,提高學(xué)生的整體素質(zhì),激勵(lì)學(xué)生創(chuàng)新,勇于探索,培養(yǎng)學(xué)生探索發(fā)現(xiàn)及分析解決問(wèn)題的實(shí)際能力.教學(xué)重、難點(diǎn)教學(xué)重點(diǎn):圓的一般方程的代數(shù)特征,一般方程與標(biāo)準(zhǔn)方程間的互化,根據(jù)已知條件確定方程中的系數(shù)D、E、F.教學(xué)難點(diǎn):對(duì)圓的一般方程的認(rèn)識(shí)、掌握和運(yùn)用教學(xué)準(zhǔn)備多媒體課件教學(xué)過(guò)程導(dǎo)入新課說(shuō)出圓心為(a,b),半徑為r的圓的標(biāo)準(zhǔn)方程.學(xué)生練習(xí):將以C(a,b)為圓心,r為半徑的圓的標(biāo)準(zhǔn)方程展開(kāi)并整理得x2+y2-2ax-2by+a2+b2-r2=0.指出:如果D=-2a,E=-2b,F=a2+b2-r2,得到方程x2+y2+Dx+Ey+F=0,這說(shuō)明圓的方程還可以表示成另外一種非標(biāo)準(zhǔn)方程形式.能不能說(shuō)方程x2+y2+Dx+Ey+F=0所表示的曲線一定是圓呢?這就是我們本堂課的內(nèi)容,教師板書(shū)課題:圓的一般方程.推進(jìn)新課新知探究提出問(wèn)題前一章我們研究直線方程用的什么順序和方法?這里我們研究圓的方程是否也能類(lèi)比研究直線方程的順序和方法呢?給出式子x2+y2+Dx+Ey+F=0,請(qǐng)你利用配方法化成不含x和y的一次項(xiàng)的式子.把式子(xa)2(yb)2=r2與x2+y2+Dx+Ey+F=0配方后的式子比較,得出x2+y2+Dx+Ey+F=0表示圓的條件.對(duì)圓的標(biāo)準(zhǔn)方程與圓的一般方程作一比較,看各自有什么特點(diǎn)?討論結(jié)果:以前學(xué)習(xí)過(guò)直線,我們首先學(xué)習(xí)了直線方程的點(diǎn)斜式、斜截式、兩點(diǎn)式、截距式,最后學(xué)習(xí)一般式.大家知道,我們認(rèn)識(shí)一般的東西,總是從特殊入手.如探求直線方程的一般形式就是通過(guò)把特殊的公式(點(diǎn)斜式、兩點(diǎn)式、)展開(kāi)整理而得到的.我們想求圓的一般方程,可仿照直線方程試一試!我們已經(jīng)學(xué)習(xí)了圓的標(biāo)準(zhǔn)方程,把標(biāo)準(zhǔn)形式展開(kāi),整理得到,也是從特殊到一般.把式子x2+y2+Dx+Ey+F=0配方得(x+)2+(y+)2=.(xa)2(yb)2=r2中,r0時(shí)表示圓,r=0時(shí)表示點(diǎn)(a,b),r0時(shí)不表示任何圖形.因此式子(x+)2+(y+)2=.()當(dāng)D2+E2-4F0時(shí),表示以(-,-)為圓心,為半徑的圓;()當(dāng)D2+E2-4F=0時(shí),方程只有實(shí)數(shù)解x=-,y=-,即只表示一個(gè)點(diǎn)(-,-);()當(dāng)D2+E2-4F0時(shí),方程沒(méi)有實(shí)數(shù)解,因而它不表示任何圖形. 綜上所述,方程x2+y2+Dx+Ey+F=0表示的曲線不一定是圓,由此得到圓的方程都能寫(xiě)成x2+y2+Dx+Ey+F=0的形式,但方程x2+y2+Dx+Ey+F=0表示的曲線不一定是圓,只有當(dāng)D2+E2-4F0時(shí),它表示的曲線才是圓.因此x2+y2+Dx+Ey+F=0表示圓的充要條件是D2+E2-4F0. 我們把形如x2+y2+Dx+Ey+F=0表示圓的方程稱(chēng)為圓的一般方程. 圓的一般方程形式上的特點(diǎn): x2和y2的系數(shù)相同,不等于0.沒(méi)有xy這樣的二次項(xiàng). 圓的一般方程中有三個(gè)待定的系數(shù)D、E、F,因此只要求出這三個(gè)系數(shù),圓的方程就確定了. 與圓的標(biāo)準(zhǔn)方程相比較,它是一種特殊的二元二次方程,代數(shù)特征明顯,圓的標(biāo)準(zhǔn)方程則指出了圓心坐標(biāo)與半徑大小,幾何特征較明顯.應(yīng)用示例例1 判斷下列二元二次方程是否表示圓的方程?如果是,請(qǐng)求出圓的圓心及半徑.(1)4x2+4y2-4x+12y+9=0;(2)4x2+4y2-4x+12y+11=0.解:(1)由4x2+4y2-4x+12y+9=0,得D=-1,E=3,F=,而D2+E2-4F=1+9-9=10,所以方程4x2+4y2-4x+12y+9=0表示圓的方程,其圓心坐標(biāo)為(,-),半徑為;(2)由4x2+4y2-4x+12y+11=0,得D=-1,E=3,F=,D2+E2-4F=1+9-11=-10,所以方程4x2+4y2-4x+12y+11=0不表示圓的方程.點(diǎn)評(píng):對(duì)于形如Ax2+By2+Dx+Ey+F=0的方程判斷其方程是否表示圓,要化為x2+y2+Dx+Ey+F=0的形式,再利用條件D2+E2-4F與0的大小判斷,不能直接套用.另外,直接配方也可以判斷.變式訓(xùn)練 求下列圓的半徑和圓心坐標(biāo):(1)x2+y2-8x+6y=0;(2)x2+y2+2by=0.解:(1)把x2+y2-8x+6y=0配方,得(x4)2(y+3)2=52,所以圓心坐標(biāo)為(4,-3),半徑為5;(2)x2+y2+2by=0配方,得x2(y+b)2=b2,所以圓心坐標(biāo)為(0,-b),半徑為|b|.例2 求過(guò)三點(diǎn)O(0,0)、M1(1,1)、M2(4,2)的圓的方程,并求圓的半徑長(zhǎng)和圓心坐標(biāo).解:方法一:設(shè)所求圓的方程為x2+y2+Dx+Ey+F=0,由O、M1、M2在圓上,則有解得D=-8,E=6,F=0,故所求圓的方程為x2+y2-8x+6y=0,即(x4)2(y+3)2=52.所以圓心坐標(biāo)為(4,-3),半徑為5.方法二:先求出OM1的中點(diǎn)E(,),M1M2的中點(diǎn)F(,),再寫(xiě)出OM1的垂直平分線PE的直線方程y-=-(x-), AB的垂直平分線PF的直線方程y-=-3(x-), 聯(lián)立得得則點(diǎn)P的坐標(biāo)為(4,-3),即為圓心.OP=5為半徑.方法三:設(shè)所求圓的圓心坐標(biāo)為P(a,b),根據(jù)圓的性質(zhì)可得|OP|=|AP|=|BP|,即x2+y2=(x-1)2+(y-1)2=(x-4)2+(y-2)2,解之得P(4,-3),OP=5為半徑.方法四:設(shè)所求圓的方程為(xa)2(yb)2=r2,因?yàn)镺(0,0)、A(1,1)、B(4,2)在圓上,所以它們的坐標(biāo)是方程的解.把它們的坐標(biāo)代入上面的方程,可以得到關(guān)于a、b、r的方程組,即解此方程組得所以所求圓的方程為(x4)2(y+3)2=52,圓心坐標(biāo)為(4,-3),半徑為5.點(diǎn)評(píng):請(qǐng)同學(xué)們比較,關(guān)于何時(shí)設(shè)圓的標(biāo)準(zhǔn)方程,何時(shí)設(shè)圓的一般方程.一般說(shuō)來(lái),如果由已知條件容易求圓心的坐標(biāo)、半徑或需要用圓心的坐標(biāo)、半徑列方程的問(wèn)題,往往設(shè)圓的標(biāo)準(zhǔn)方程;如果已知條件和圓心坐標(biāo)或半徑都無(wú)直接關(guān)系,往往設(shè)圓的一般方程.例3 已知點(diǎn)P(10,0),Q為圓x2+y2=16上一動(dòng)點(diǎn).當(dāng)Q在圓上運(yùn)動(dòng)時(shí),求PQ的中點(diǎn)M的軌跡方程.活動(dòng):學(xué)生回想求曲線方程的方法與步驟,思考討論,教師適時(shí)點(diǎn)撥提示,本題可利用平面幾何的知識(shí),見(jiàn)中點(diǎn)作中線,利用中線定長(zhǎng)可得方程,再就是利用求曲線方程的辦法來(lái)求.圖1解法一:如圖1,作MNOQ交x軸于N,則N為OP的中點(diǎn),即N(5,0).因?yàn)閨MN|=|OQ|=2(定長(zhǎng)).所以所求點(diǎn)M的軌跡方程為(x-5)2+y2=4.點(diǎn)評(píng):用直接法求軌跡方程的關(guān)鍵在于找出軌跡上的點(diǎn)應(yīng)滿(mǎn)足的幾何條件,然后再將條件代數(shù)化.但在許多問(wèn)題中,動(dòng)點(diǎn)滿(mǎn)足的幾何條件較為隱蔽復(fù)雜,將它翻譯成代數(shù)語(yǔ)言時(shí)也有困難,這就需要我們探討求軌跡問(wèn)題的新方法.轉(zhuǎn)移法就是一種很重要的方法.用轉(zhuǎn)移法求軌跡方程時(shí),首先分析軌跡上的動(dòng)點(diǎn)M的運(yùn)動(dòng)情況,探求它是由什么樣的點(diǎn)控制的.解法二:設(shè)M(x,y)為所求軌跡上任意一點(diǎn)Q(x0,y0).因?yàn)镸是PQ的中點(diǎn),所以 (*)又因?yàn)镼(x0,y0)在圓x2+y2=16上,所以x02+y02=16.將(*)代入得(2x-10)2+(2y)2=16.故所求的軌跡方程為(x-5)2+y2=4.點(diǎn)評(píng):相關(guān)點(diǎn)法步驟:設(shè)被動(dòng)點(diǎn)M(x,y),主動(dòng)點(diǎn)Q(x0,y0).求出點(diǎn)M與點(diǎn)Q坐標(biāo)間的關(guān)系 ()從()中解出 ()將()代入主動(dòng)點(diǎn)Q的軌跡方程(已知曲線的方程),化簡(jiǎn)得被動(dòng)點(diǎn)的軌跡方程.這種求軌跡方程的方法也叫相關(guān)點(diǎn)法,以后要注意運(yùn)用.變式訓(xùn)練 已知線段AB的端點(diǎn)B的坐標(biāo)是(4,3),端點(diǎn)A在圓(x+1)2+y2=4上運(yùn)動(dòng),求線段AB的中點(diǎn)M的軌跡方程.解:設(shè)點(diǎn)M的坐標(biāo)是(x,y),點(diǎn)A的坐標(biāo)是(x0,y0).由于點(diǎn)B的坐標(biāo)是(4,3)且M是線段AB的中點(diǎn),所以x=,y=.于是有x0=2x-4,y0=2y-3. 因?yàn)辄c(diǎn)A在圓(x+1)2+y2=4上運(yùn)動(dòng),所以點(diǎn)A的坐標(biāo)滿(mǎn)足方程(x+1)2+y2=4,即(x0+1)2+y02=4.把代入,得(2x-4+1)2+(2y-3)2=4,整理,得(x-)2+(y-)2=1.所以點(diǎn)M的軌跡是以(,)為圓心,半徑長(zhǎng)為1的圓.知能訓(xùn)練課本練習(xí)1、2、3.拓展提升問(wèn)題:已知圓x2+y2-x-8y+m=0與直線x+2y-6=0相交于P、Q兩點(diǎn),定點(diǎn)R(1,1),若PRQR,求實(shí)數(shù)m的值.解:設(shè)P(x1, y1)、Q(x2,y2),由消去y得5x2+4m-60=0. 由題意,方程有兩個(gè)不等的實(shí)數(shù)根,所以60-4m0,m15.由韋達(dá)定理因?yàn)镻RQR,所以kPRkQR=-1.所以=-1,即(x1-1)(x2-1)+(y1-1)(y2-1)=0,即x1x2-(x1+x2)+y1y2-(y1+y2)+2=0. 因?yàn)閥1=3-,y2=3,所以y1y2=(3-)(3)=9-(x1+x2)+=9+,y1+y2=6,代入得x1x2+5=0,即(m-12)+5=0.所以m=10,適合m15.所以實(shí)數(shù)m的值為10.課堂小結(jié)1.任何一個(gè)圓的方程都可以寫(xiě)成x2+y2+Dx+Ey+F=0的形式,但方程x2+y2+Dx+Ey+F=0表示的曲線不一定是圓,只有D2+E2-4F0時(shí),方程表示圓心為(-,-),半徑為r=的圓.2.求圓的方程,應(yīng)根據(jù)條件特點(diǎn)選擇合適的方程形式:若條件與圓心、半徑有關(guān),則宜用標(biāo)準(zhǔn)方程;若條件主要是圓所經(jīng)過(guò)的點(diǎn)的坐標(biāo),則宜用一般方程.3.要畫(huà)出圓的圖像,必須要知道圓心坐標(biāo)和半徑,因此應(yīng)掌握利用配方法將圓的一般方程化為標(biāo)準(zhǔn)方程的方法.作業(yè)習(xí)題4.1 A組1、6,B組1、2、3.板書(shū)設(shè)計(jì)4.1.2 圓的一般方程圓的一般方程:x2+y2+Dx+Ey+F=0 例1D2+E2-4F0 變式 例2 例3 變式教學(xué)反思這是一節(jié)介紹新知識(shí)的課,而且這節(jié)課還非常有利于展現(xiàn)知識(shí)的形成過(guò)程.因此,在設(shè)計(jì)這節(jié)課時(shí),力求“過(guò)程、結(jié)論并重;知識(shí)、能力、思想方法并重”.在展現(xiàn)知識(shí)的形成過(guò)程中,盡量避免學(xué)生被動(dòng)接受,引導(dǎo)學(xué)生探索,重視探索過(guò)程.一方面,把直線一般方程探求過(guò)程進(jìn)行回顧、類(lèi)比,學(xué)生從中領(lǐng)會(huì)探求方法;另一方面,“把標(biāo)準(zhǔn)方程展開(kāi)認(rèn)識(shí)一般方程”這一過(guò)程充分運(yùn)用了“通過(guò)特殊認(rèn)識(shí)一般”的科學(xué)思想方法.同時(shí),通過(guò)類(lèi)比進(jìn)行條件的探求“D2+E24F”與“”(判別式)類(lèi)比.在整個(gè)探求過(guò)程中充分利用了“舊知識(shí)”及“舊知識(shí)的形成過(guò)程”,并用它探求新知識(shí).這樣的過(guò)程,既是學(xué)生獲得新知識(shí)的過(guò)程,更是培養(yǎng)學(xué)生能力的過(guò)程.- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年人教版高中數(shù)學(xué)必修二教案:4-1-2 圓的一般方程 2019 2020 年人教版 高中數(shù)學(xué) 必修 教案 一般方程
鏈接地址:http://italysoccerbets.com/p-6205108.html