裝配圖懲罰函數(shù)法二級(jí)圓柱齒輪減速器的優(yōu)化設(shè)計(jì)
裝配圖懲罰函數(shù)法二級(jí)圓柱齒輪減速器的優(yōu)化設(shè)計(jì),裝配,懲罰,函數(shù),二級(jí),圓柱齒輪,減速器,優(yōu)化,設(shè)計(jì)
一、 選題的依據(jù)及意義:齒輪減速器是原動(dòng)機(jī)和工作機(jī)之間的獨(dú)立的閉式傳動(dòng)裝置,用來(lái)降低轉(zhuǎn)速和增大轉(zhuǎn)矩,以滿足工作需要,在某些場(chǎng)合也用來(lái)增速,稱為增速器。其特點(diǎn)是減速電機(jī)和大型減速機(jī)的結(jié)合。無(wú)須聯(lián)軸器和適配器,結(jié)構(gòu)緊湊。負(fù)載分布在行星齒輪上,因而承載能力比一般斜齒輪減速機(jī)高。滿足小空間高扭矩輸出的需要。廣泛應(yīng)用于大型礦山,鋼鐵,化工,港口,環(huán)保等領(lǐng)域。與K、R系列組合能得到更大速比。按照齒形分為圓柱齒輪減速器、圓錐齒輪減速器和圓柱圓錐齒輪減速器; 二級(jí)圓柱齒輪減速器就是按其分類來(lái)命名的。圓柱齒輪減速器的設(shè)計(jì)是按傳統(tǒng)方法進(jìn)行的。設(shè)計(jì)人員按照各種資料、文獻(xiàn)提供的數(shù)據(jù),結(jié)合自己的設(shè)計(jì)實(shí)驗(yàn),并對(duì)已有減速器做一番對(duì)比,初步定出一個(gè)設(shè)計(jì)方案,然后對(duì)這個(gè)方案進(jìn)行一些驗(yàn)算,如果驗(yàn)算通過(guò)了,方案便被肯定了。顯然,這個(gè)方案是可采用的。但這往往使設(shè)計(jì)的減速器有很大的尺寸富余量,造成財(cái)力、物力和人力的極大浪費(fèi)。因此,優(yōu)化圓柱齒輪減速器勢(shì)在必行。圓柱齒輪傳動(dòng)與普通定軸齒輪傳動(dòng)相比較,具有質(zhì)量小、體積小、傳動(dòng)比大、承載能力大以及傳動(dòng)平穩(wěn)和傳動(dòng)效率高等優(yōu)點(diǎn),這些已被我國(guó)越來(lái)越多的機(jī)械工程技術(shù)人員所了解和重視。由于在各種類型的圓柱齒輪傳動(dòng)中均有效的利用了功率分流性和輸入、輸出的同軸性以及合理地采用了內(nèi)嚙合,才使得其具有了上述的許多獨(dú)特的優(yōu)點(diǎn)。圓柱齒輪傳動(dòng)不僅適用于高速、大功率而且可用于低速、大轉(zhuǎn)矩的機(jī)械傳動(dòng)裝置上。它可以用作減速、增速和變速傳動(dòng),運(yùn)動(dòng)的合成和分解,以及其特殊的應(yīng)用中;這些功用對(duì)于現(xiàn)代機(jī)械傳動(dòng)發(fā)展有著重要意義。因此,圓柱齒輪傳動(dòng)在起重運(yùn)輸、工程機(jī)械、冶金礦山、石油化工、建筑機(jī)械、輕工紡織、醫(yī)療器械、儀器儀表、汽車、船舶、兵器、和航空航天等工業(yè)部門均獲得了廣泛的應(yīng)用。對(duì)這種減速器進(jìn)行優(yōu)化設(shè)計(jì),必將獲得可觀的經(jīng)濟(jì)效益。選做這個(gè)畢業(yè)設(shè)計(jì),一方面對(duì)于減速器的內(nèi)部結(jié)構(gòu)和工作原理也有一定的了解和基礎(chǔ),其次通過(guò)對(duì)圓柱齒輪減速器這一畢業(yè)課題設(shè)計(jì)可以鞏固我大學(xué)4年來(lái)所學(xué)的專業(yè)知識(shí),對(duì)于我也是一種檢驗(yàn)??梢匀鏅z驗(yàn)我大學(xué)所學(xué)的知識(shí)是否全面,是否能靈活運(yùn)用到實(shí)際生活工作中。在做的過(guò)程中我還可以不斷學(xué)習(xí)和拓寬視野和思路,做到理論與實(shí)際相結(jié)合的運(yùn)用。最重要的是對(duì)于即將離校走向社會(huì)的我是一種挑戰(zhàn),培養(yǎng)我獨(dú)立思考,樹立全局觀念,為以后的我奠定堅(jiān)實(shí)的基礎(chǔ)。二、 國(guó)內(nèi)外研究概況及發(fā)展趨勢(shì)(含文獻(xiàn)綜述):隨著時(shí)代進(jìn)步,科技與時(shí)俱進(jìn),對(duì)于齒輪的傳動(dòng)越來(lái)越多的科技因素在起著主導(dǎo)地位。世界上一些工業(yè)發(fā)達(dá)國(guó)家,如日本、德國(guó)、英國(guó)、美國(guó)和俄羅斯等,對(duì)齒輪傳動(dòng)的應(yīng)用,生產(chǎn)和研究都十分重視,在結(jié)構(gòu)優(yōu)化、傳動(dòng)性能,傳動(dòng)功率、轉(zhuǎn)矩和速度等方面均處于領(lǐng)先地位,并出現(xiàn)一些新型的圓柱傳動(dòng)技術(shù),如封閉圓柱齒輪傳動(dòng)、圓柱齒輪變速傳動(dòng)和微型圓柱齒輪傳動(dòng)等早已在現(xiàn)代化的機(jī)械傳動(dòng)設(shè)備中獲得了成功的應(yīng)用。圓柱齒輪傳動(dòng)在我國(guó)已有了許多年的發(fā)展史,很早就有了應(yīng)用。然而,自20世紀(jì)60年代以來(lái),我國(guó)才開始對(duì)圓柱齒輪傳動(dòng)進(jìn)行了較深入、系統(tǒng)的研究和試制工作。無(wú)論是在設(shè)計(jì)理論方面,還是在試制和應(yīng)用實(shí)踐方面,均取得了較大的成就,并獲得了許多的研究成果。 近20多年來(lái),尤其是我國(guó)改革開放以來(lái),隨著我國(guó)科學(xué)技術(shù)水平的進(jìn)步和發(fā)展,我國(guó)已從世界上許多工業(yè)發(fā)達(dá)國(guó)家引進(jìn)了大量先進(jìn)的機(jī)械設(shè)備和技術(shù),經(jīng)過(guò)我國(guó)機(jī)械科技人員不斷積極的吸收和消化,與時(shí)俱進(jìn),開拓創(chuàng)新地努力奮進(jìn),使我國(guó)的齒輪傳動(dòng)技術(shù)有了迅速的發(fā)展。國(guó)內(nèi)減速器行業(yè)重點(diǎn)骨干企業(yè)的產(chǎn)品品種、規(guī)格及參數(shù)覆蓋范圍近幾年都在不斷擴(kuò)展,產(chǎn)品質(zhì)量已達(dá)到國(guó)外先進(jìn)工業(yè)國(guó)家同類產(chǎn)品水平??v觀國(guó)內(nèi)減速器行業(yè)的現(xiàn)狀,為保持行業(yè)的健康可持續(xù)發(fā)展在充分肯定行業(yè)不斷發(fā)展、進(jìn)步的同時(shí),更應(yīng)看到存在的問(wèn)題,并積極研究對(duì)策,采取措施,力爭(zhēng)在較短時(shí)間內(nèi)能有所進(jìn)展。目前,同外減速器行業(yè)存在的比較突出的問(wèn)題是,行業(yè)整體新產(chǎn)品開發(fā)能力弱、工藝創(chuàng)新及管理水平低,企業(yè)管理方式較為粗放,相當(dāng)比例的產(chǎn)品仍為中低檔次、缺乏有國(guó)際影響力的產(chǎn)品品牌、行業(yè)整體散、亂情況依然較為嚴(yán)重?;诖?,推進(jìn)行業(yè)優(yōu)勢(shì)企業(yè)間的購(gòu)并、整合,盡快形成有著一定的市場(chǎng)影響力的品牌、有較大規(guī)模的和實(shí)力、有較強(qiáng)產(chǎn)品研發(fā)和技術(shù)支持能力的這樣若干個(gè)集團(tuán)型企業(yè),如此放能在與國(guó)外同行的競(jìng)爭(zhēng)中保持一定的優(yōu)勢(shì)并不斷得以發(fā)展。國(guó)內(nèi)減速器行業(yè)重點(diǎn)骨干企業(yè)的產(chǎn)品品種、規(guī)格及參數(shù)覆蓋范圍近幾年都在不斷擴(kuò)展,產(chǎn)品質(zhì)量已達(dá)到國(guó)外先進(jìn)工業(yè)國(guó)家同類產(chǎn)品水平,完全可承擔(dān)起為國(guó)民經(jīng)濟(jì)各行業(yè)提供傳動(dòng)裝置配套的重任,部分產(chǎn)品還出口至歐美及東南亞地區(qū)。 目前,國(guó)內(nèi)各類通用減速器的標(biāo)準(zhǔn)系列已達(dá)數(shù)百個(gè),基本可滿足各行業(yè)對(duì)通用減速器的需求。在第一代通用硬齒面齒輪減速器及圓弧圓柱蝸桿減速器系列產(chǎn)品的基礎(chǔ)上,由西安重型機(jī)械研究落開發(fā)并完成標(biāo)準(zhǔn)化的新一代圓柱及圓錐圓柱齒輪減速器及圓弧圓柱蝸桿減速器業(yè)已投方市場(chǎng)。新一代減速器的突出特點(diǎn)為不僅在產(chǎn)品性能參數(shù)上進(jìn)一步進(jìn)行于優(yōu)化,而且在系列設(shè)計(jì)上完全遵從模塊化的設(shè)計(jì)原則,產(chǎn)品造型更加美觀,更宜于組織批量生產(chǎn),更適應(yīng)現(xiàn)代工業(yè)不斷發(fā)展而對(duì)基礎(chǔ)件產(chǎn)品提出的愈來(lái)愈高的配套要求。此外,南京高精齒輪股份有限公司也推動(dòng)了PR系列的模塊式齒輪減速器系列產(chǎn)品。但總體而言,國(guó)內(nèi)同外減速器系列產(chǎn)品的開發(fā)及更新工作近幾年進(jìn)展緩慢,與國(guó)外同行在此方面的差距有拉大的趨勢(shì)。而且與市場(chǎng)的需求也很不適應(yīng),西安重型機(jī)械研究所及國(guó)內(nèi)其他單位今年已著手開始這方面的開發(fā)級(jí)標(biāo)準(zhǔn)化工作。在通用減速器的制造方面,國(guó)內(nèi)目前生產(chǎn)廠家數(shù)目眾多,如對(duì)各種類型的圓柱齒輪機(jī)圓錐圓柱齒輪或者齒輪蝸桿減速器系列產(chǎn)品,國(guó)內(nèi)主要廠家有南京高精齒輪股份有限公司、寧波東力傳動(dòng)設(shè)備有限公司、江陰齒輪箱制造有限公司、江蘇泰星減速器有限公司、江蘇金象減速機(jī)有限公司、山西平遙減速機(jī)廠等。對(duì)象蝸桿減速器,目前國(guó)內(nèi)主要生產(chǎn)圓弧圓柱蝸桿減速器、錐面包絡(luò)圓柱蝸桿減速器、平面二次包絡(luò)環(huán)面蝸桿減速器等多種類型,主要生產(chǎn)廠家有江蘇金象減速機(jī)有限公司、首鋼機(jī)械制造公司、杭州減機(jī)廠、杭州萬(wàn)杰減速劑有限公司、天津萬(wàn)新減速機(jī)廠、上海浦江減速機(jī)有限公司等,對(duì)各種通用圓柱齒輪減速器、包括標(biāo)準(zhǔn)的NGW系列圓柱齒輪減速器,也包括各類回轉(zhuǎn)圓柱減速器及封閉式圓柱齒輪檢錄其等,主要生產(chǎn)廠家有荊州巨鯨動(dòng)機(jī)械有限公司、洛陽(yáng)中重齒輪箱有限公司、西安重型機(jī)械研究所、石家莊科一重工有限公司、內(nèi)蒙興華機(jī)械廠等。 在各類專用傳動(dòng)裝置的開發(fā)機(jī)制造方面,國(guó)內(nèi)近幾年取得的明顯的進(jìn)展,如重慶齒輪箱有限責(zé)任公司生產(chǎn)的MDH28型磨機(jī)邊緣驅(qū)動(dòng)傳動(dòng)裝置,其最大功率已達(dá)7000KW,傳動(dòng)轉(zhuǎn)矩達(dá)5000KN.m,總重46噸,生產(chǎn)的1700熱連軋主傳動(dòng)齒輪箱子的最大模數(shù)為30,重量達(dá)180噸。由杭州前進(jìn)齒輪箱有限公司生產(chǎn)的gwc70/76型1.2萬(wàn)噸及裝箱船用齒輪箱,傳動(dòng)功率已達(dá)6250KW。(轉(zhuǎn)載中國(guó)鍛壓網(wǎng))由南京高精齒輪股份有限公司及重慶齒輪箱有限公司生產(chǎn)的里磨系列齒輪箱最大功率已達(dá)3800KW,由西安重型機(jī)械研究所、洛陽(yáng)重重齒輪箱有限公司、荊州巨鯨傳動(dòng)機(jī)械有限公司等開發(fā)制造的重載圓柱齒輪箱系列產(chǎn)品在礦山、冶金、建材、煤炭及水電等行業(yè)也都得到了廣泛應(yīng)用,其中西安重型機(jī)械研究所開發(fā)的水泥行業(yè)輥壓機(jī)懸掛系列圓柱齒輪箱的輸入功率已達(dá)1250KW,用于鋁造軋機(jī)的圓柱齒輪箱有司責(zé)任公司、杭州前進(jìn)出論箱有限公司、西安重型機(jī)械研究所開發(fā)的風(fēng)力發(fā)電增速箱系列產(chǎn)品也逐步取代進(jìn)口產(chǎn)品,廣泛應(yīng)用于國(guó)內(nèi)風(fēng)電行業(yè)。在大型齒圈的制造方面,國(guó)內(nèi)目前最大直徑為9.936米,凈重達(dá)80噸的齒圈已由中信重機(jī)制造完成,并用于武鋼集團(tuán)年產(chǎn)500萬(wàn)噸氧化球生產(chǎn)線,至此用于大型燒結(jié)機(jī)、磨機(jī)、回轉(zhuǎn)窯的大型驅(qū)動(dòng)裝置以及用于轉(zhuǎn)爐及燒結(jié)設(shè)備的大型柔性傳動(dòng)裝置國(guó)內(nèi)均可圈套供貨,而無(wú)需再行進(jìn)口。在其他類型新產(chǎn)品的開發(fā)方面,行業(yè)企業(yè)也取得了不少成果,如西安重型機(jī)械研究所開發(fā)的工程車輛變速箱和風(fēng)機(jī)及泵用差動(dòng)節(jié)能調(diào)速裝置、洛陽(yáng)中重齒輪箱有限公司的大型礦井提升機(jī)圓柱齒輪箱、江蘇金象減速機(jī)公司的磨機(jī)驅(qū)動(dòng)齒輪箱、北京太富力傳動(dòng)有限公司的大型三環(huán)傳動(dòng)齒輪箱及傳動(dòng)裝置等,也都受到了市場(chǎng)的歡迎并得以廣泛應(yīng)用。在行業(yè)企業(yè)的產(chǎn)能擴(kuò)展及技術(shù)改造方面,近幾年呈現(xiàn)出跨越式的發(fā)展,這一方面得益于近幾年市場(chǎng)強(qiáng)勁需求的拉動(dòng),另一方面也是受企業(yè)擴(kuò)大生產(chǎn)規(guī)模、提升加工制造水平、進(jìn)而提升企業(yè)競(jìng)爭(zhēng)力的主觀愿望的驅(qū)動(dòng),國(guó)內(nèi)主要產(chǎn)品廠家近二年購(gòu)進(jìn)的關(guān)鍵加工設(shè)備,如大型磨齒機(jī)、鏜銑床、技工中心及熱處理設(shè)備等,累計(jì)超過(guò)200余臺(tái)(套),預(yù)計(jì)行業(yè)產(chǎn)能擴(kuò)大一倍以上,技改工作的開展固然有提審行業(yè)企業(yè)規(guī)模和生產(chǎn)集中度及競(jìng)爭(zhēng)力的客觀效果,但由于仍存在行業(yè)企業(yè)數(shù)量多、規(guī)格小及水平參差不齊等實(shí)際問(wèn)題,因之隨著市場(chǎng)需求的回落和國(guó)外同行廠商大規(guī)模進(jìn)入國(guó)內(nèi)市場(chǎng),行業(yè)競(jìng)爭(zhēng)必將進(jìn)一步加劇,這也必將促進(jìn)行業(yè)企業(yè)間的購(gòu)并、整合甚至轉(zhuǎn)型。據(jù)有關(guān)資料介紹,人們認(rèn)為目前齒輪傳動(dòng)技術(shù)的發(fā)展方向如下:(1) 標(biāo)準(zhǔn)化、多品種 目前世界上已經(jīng)有50多個(gè)漸開線圓柱齒輪傳動(dòng)系列設(shè)計(jì);而且還演化出多種形式的圓柱減速器、差速器和圓柱變速器等多種產(chǎn)品。(2) 硬齒面、高精度 圓柱傳動(dòng)機(jī)構(gòu)中的齒輪廣泛采用滲碳和氮化等化學(xué)熱處理。齒輪制造精度一般均在6級(jí)以上。顯然,采用硬齒面、高精度有利于進(jìn)一步提高承載能力,使齒輪尺寸變得更小。(3) 高轉(zhuǎn)速、大功率 圓柱齒輪傳動(dòng)機(jī)構(gòu)在高速傳動(dòng)中,如在高速汽輪中已獲得日益廣泛的應(yīng)用,其傳動(dòng)功率也越來(lái)越大。大規(guī)格、大轉(zhuǎn)矩 在中低速、重載傳動(dòng)中,傳遞大轉(zhuǎn)矩的大規(guī)格的圓柱齒輪傳動(dòng)已有了較大的發(fā)展。三、 研究?jī)?nèi)容及實(shí)驗(yàn)方案:在圓柱齒輪傳動(dòng)的設(shè)計(jì)時(shí),應(yīng)該根據(jù)設(shè)計(jì)任務(wù)書所要求該圓柱傳動(dòng)的要求(原始數(shù)據(jù)及設(shè)計(jì)技術(shù)要求),進(jìn)一步分析該傳動(dòng)所需的使用要求、工作狀況和所需齒輪的機(jī)械特性,首先應(yīng)了解和掌握該圓柱齒輪傳動(dòng)的已知條件;通常,已知的其原始數(shù)據(jù)為輸入功率、輸入轉(zhuǎn)速、傳動(dòng)比、工作特性和載荷工況等。 建立優(yōu)化設(shè)計(jì)模型,優(yōu)化問(wèn)題的數(shù)學(xué)是實(shí)際優(yōu)化設(shè)計(jì)問(wèn)題的數(shù)學(xué)抽象。在明確設(shè)計(jì)變量、約束條件、目標(biāo)函數(shù)之后,優(yōu)化設(shè)計(jì)問(wèn)題就可以轉(zhuǎn)化成一般數(shù)學(xué)問(wèn)題。采用懲罰函數(shù)法對(duì)設(shè)計(jì)參數(shù)進(jìn)行約束優(yōu)化,以中心距最小為目標(biāo)進(jìn)行優(yōu)化設(shè)計(jì),并與常規(guī)設(shè)計(jì)進(jìn)行比較。進(jìn)而繪制出減速器裝配圖及主要零件圖。二級(jí)圓柱齒輪減速器的優(yōu)化設(shè)計(jì)的一般原則是:(1)各級(jí)傳動(dòng)的承載能力大致相等(可以最大性能的發(fā)揮減速器的承載能力);(2)在一定承載能力下,減速器具有最小的外形尺寸和重量;(3)各級(jí)傳動(dòng)中大齒輪的浸油深度大致相等。四、目標(biāo)、主要特色及工作進(jìn)度1、設(shè)計(jì)目標(biāo): 設(shè)計(jì)出的圓柱齒輪減速器:其輸入功率P=6.2kW,輸入轉(zhuǎn)速n1=1450r/min,總傳動(dòng)比i=16.5,齒輪的寬度系數(shù)a=0.4,工作壽命10年,每年工作300天。結(jié)構(gòu)緊湊、傳動(dòng)功率較高,采用懲罰函數(shù)法,以中心距最小為目標(biāo)進(jìn)行減速器優(yōu)化設(shè)計(jì)2、圓柱齒輪減速器主要特色:1、重量輕、體積小,結(jié)構(gòu)緊湊、承載能力大2、傳動(dòng)效率高 3、傳動(dòng)功率范圍大,可以實(shí)現(xiàn)運(yùn)動(dòng)的合成與分解4、運(yùn)動(dòng)平穩(wěn)、抗沖擊和振動(dòng)的能力較強(qiáng)5、采用硬齒面技術(shù),使用壽命長(zhǎng),使用性廣。3、工作進(jìn)度:1. 收集資料、開題報(bào)告、外文翻譯 3.053.25 第1周第3周2. 建立優(yōu)化設(shè)計(jì)的數(shù)學(xué)模型 3.264.8 第4周第6周3編寫優(yōu)化設(shè)計(jì)程序、計(jì)算 4.114.24 第 7周第9周4. 減速器常規(guī)設(shè)計(jì)計(jì)算、結(jié)果分析 4.255.6 第10周第12周5. 繪制減速器裝配圖及主要零件圖 5.95.20 第13周第14周6. 撰寫畢業(yè)設(shè)計(jì)論文 5.215.31 第15周第16周7答辯準(zhǔn)備及論文答辯 6.16.2 第17周五、參考文獻(xiàn)1、璞良貴,紀(jì)名剛主編.機(jī)械設(shè)計(jì).第八版.北京:高等教育出版社,20072、孫靖民主編.機(jī)械優(yōu)化設(shè)計(jì).第三版.北京:機(jī)械工業(yè)出版社,20053、方世杰,綦耀光主編.機(jī)械優(yōu)化設(shè)計(jì).北京:機(jī)械工業(yè)出版社,1997.24、王昆等主編. 機(jī)械設(shè)計(jì)課程設(shè)計(jì)手冊(cè).北京:機(jī)械工業(yè)出版社,20045、Carrol, R., and Johnson, G.,“Optimal design of compact spur gear sets”, ASME Journal of mechanisms, transmissions and automation in design. Vol.106, No.1, March 1984, pp.95-1016畢業(yè)設(shè)計(jì)(論文)開題報(bào)告題目 懲罰函數(shù)法二級(jí)圓柱齒輪減速器的優(yōu)化設(shè)計(jì) 專 業(yè) 名 稱 機(jī)械設(shè)計(jì)制造及其自動(dòng)化班 級(jí) 學(xué) 號(hào) 078105214學(xué) 生 姓 名 江 崇 文指 導(dǎo) 教 師 朱 保 利填 表 日 期 2011 年 3 月 23 日懲罰函數(shù)法二級(jí)圓柱齒輪減速器的優(yōu)化設(shè)計(jì)學(xué)生姓名:江崇文 班級(jí):0781052指導(dǎo)老師:朱保利摘要:減速器是各類機(jī)械設(shè)備中廣泛使用的傳動(dòng)裝置。其主要特點(diǎn)為傳遞功率大、制造簡(jiǎn)單、維修方便和使用壽命長(zhǎng)等優(yōu)點(diǎn)。傳統(tǒng)的減速器設(shè)計(jì)一般通過(guò)反復(fù)的試湊、校核確定設(shè)計(jì)方案,雖然也能獲得滿足給定條件的設(shè)計(jì)方案,實(shí)踐證明,按照傳統(tǒng)設(shè)計(jì)方法作出的設(shè)計(jì)方案,大部分都有改進(jìn)的余地,不是最佳方案。本文將對(duì)二級(jí)圓柱齒輪減速器進(jìn)行優(yōu)化設(shè)計(jì)??紤]到以中心距最小為目標(biāo),在此采用了懲罰函數(shù)法。通過(guò)設(shè)計(jì)變量的選取、目標(biāo)函數(shù)和約束條件的確定,建立了圓柱齒輪減速器設(shè)計(jì)的數(shù)學(xué)模型。編寫了優(yōu)化設(shè)計(jì)程序,通過(guò)在計(jì)算機(jī)上運(yùn)行和計(jì)算,得出優(yōu)化設(shè)計(jì)各參數(shù)的大小。從理論上對(duì)圓柱齒輪減速器的結(jié)構(gòu)進(jìn)行了分析并作了常規(guī)設(shè)計(jì),并對(duì)其它的一些附件進(jìn)行了相應(yīng)的設(shè)計(jì),設(shè)計(jì)完畢,對(duì)其齒面、齒根彎曲強(qiáng)度進(jìn)行校核,結(jié)果滿足要求。結(jié)果表明,采用優(yōu)化設(shè)計(jì)方法后,在滿足強(qiáng)度要求的前提下,減速器的尺寸大大降低了,減少了用材及成本,提高了設(shè)計(jì)效率和質(zhì)量。關(guān)鍵詞:圓柱齒輪減速器 優(yōu)化設(shè)計(jì) 懲罰函數(shù)法 中心距 常規(guī)設(shè)計(jì)指導(dǎo)老師簽名:Penalty function Optimal Design for Two-Grade Helical Cylindrical Gear RedactorStudent name:Jiang Chong Wen Class:0781052Supervisor:Zhu Bao LiAbstract:Reducer is a transmission device which is widely found in mechanical equipment. The main characteristics of it is large power transmission、manufacture simple、easy maintenance and long life. Traditionally, in order to get satisfied design data of reducer, you must cut and try again and again. Although this design can satisfy conditions given. Proved by the practice, according to the traditional design method to the design, most of them have room for improvement, it is not optimal. In this article we will two-grade helical cylindrical gear redactor conduct optimal design . Taking account the minimum distance of center into the goal, penalty function used in this method . In this paper, by the way of selecting design variable , setting up goal function and restriction condition , the mathematical model of cylindrical gear reducer is established . The preparation of the optimal design program , run by the computer and calculating the optimal design parameters . The structure of the gear reducer is analyzed and made conventional design in theory, and some other accessories for the corresponding design , which proved reasonable for the the checking of Tooth surface and tooth root bending strength after the designation completed . The results show that the optimal design methods , strength requirements are met under the premise of the size reducer greatly reduced, reducing the timber and the cost , improve the design efficiency and quality. Key words: Helical Cylindrical Gear Redactor optimal design penalty function Center distance Conventional DesignSignature of supervisor:Optimal Design of Compliant Trailing Edge for Shape ChangingAbstract: Adaptive wings have long used smooth morphing technique of compliant leading an d trailing edge to improve their aerodynamic characteristicsThis paper introduces a systematic approach to design compliant structures to carry out required shape changes under distributed pressure loadsIn order to minimize the deviation of the deformed shape from the target shape,this method uses M ATLAB and ANSYS to optimize the distributed compliant mechanisms by way of the ground approach and genetic algorithm (GA)to remove the elements possessive of very low stressesIn the optimization process,man y factors should be considered such as air loads,input displacements,and geometric nonlinearities。Direct search method is used to locally optimize the dimension an d input displacement after the GA optimization。The resultant structure could make its shape change from 0 to 93degreesTheexperimental data of the model confirm s the feasibility of this approachKeywords: adaptive wing;compliant mechanism;genetic algorithm ;topology optimization;distributed pressure load;geometric nonlinearity1 Introduction:As conventional airfoil contours are usually designed with specific lift coefficients and M ach numbers,they could not change in accordance with the environment changingSiclari and Austin indicated that the variable camber trailing edge would produce the drag about sixty percent less than the conventional fixed camber airfoilThere are three methods used to design able camber wingsOf themone is conventional hinged mechanism,which,however, will create discontinuities over the wings surface leading to earlier airflow separation an d drag increase The others are smart material and the compliant mechanism,of which both could realize smooth shape changingNevertheless,compared to the compliant mechanism,the smartmaterialmade actuators have many disadvantages,such as deficient in energy ,slow in response,strong in hysteresis,limited by temperature,and difficult to control too many actuatorsMusolff from Industry University of Berlin used NiTi shapememoryalloy wire to make an adaptive variable camber wing,which could quickly change its shape,but could not perform highly frequent alteration because of its resilience depend en ton the heat exchange with the outside environment。 Compliant mechanism is a kind of one-piece flexible structure,which can transfer motion and power through its own elastic deformationIt is not only flexible enough to deform,but also has enough stiffness to withstand external loadsThanks to its jointfree nature,it does not have the trouble some problems confronted by conventional mechanism such as friction,lubrication,noise and recoiling,thereby achieving smooth shape changing. In 1 994,Kota,a professor from University of Michigan,firstly pointed out that compliant mechanism could be used to control static shape changing under the sponsorship of the Air Force Of ice of Scientific Research in USASaggere and Kotasuggested a new method to design compliant adaptive structures,which made the least square errors between the shapechanged curve and the target curve as the objective function for optimizationBased on their work,Lu put forward a load pathrepresentation methodHowever, her work was limited to only linear analysis under consideration of nodal loadsGood from Virginia Polytechnic Institute of State University used the compliant mechanism and the Moving Asymptotes method to design the fuselage tail within the allowable range of its tip maximal deflectionKota and He trick in2004 designed a compliant trailing edge on the baseof the F16s data,which can change from 0。to 15。and obtained a patentCampanile from German Aerospace Center presented a modal procedure to design synthetic flexible mechanisms for airfoil shape control,and pointed out that the future research should take into account the air load and the geometric nonlinearityBuhl from Riso National Laboratory of the Wind Energy Department in Denmark used the SIM P method and geometrically nonlinear finite element method to design compliant trailing edge flapsFlxSys Inc in 2006 produced an adaptive compliant wing,which stood the test on the White Knight airplaneThe results indicated that the compliant trailing edge could change+10 In China,the research of adaptive wing has been concentrated on smart material and conventional mechanismFew people,it seems,have worked on designing adaptive wings with the compliant mechanismYang is an exceptionHe analyzed the active aeroelastic wings based on the aeroservoelasticity technologyChen and Huang separately investigated the morphing of the compliant leading edge from the viewpoints of discreteness and continuity. This paper presents a method to design the shape changeable structure by MATLAB and ANSYS associated with distributed compliant mechanism on the base of the ground structure approach and genetic algorithm (GA)taking into account the external distributed loads and geometric nonlinearity.2 Optimization Process:21 Defining the trailing edge model and objective function As shown in Fig1,both curves represent two ideal shapes of the trailing edge in the different flying statesOne side point)of the structure is supposed to be fixed,and the other side point) to be sliding horizontally. Firstly, the design domain should be defined by the initial curve shapethe input location and the boundary conditionsThenit is divided with abeam element network simulating the birds feather as shown in Fig2This is termed the partial ground structure method. Fig1 Initial shape and target shape Fig2 Discretization of the design domain The simplest and most effective way to manufacture the planar compliant mechanism is to use wirecutting technologyIn the optimization program,all the elements are of rectangular beams with the same width equal to the thickness of the material,every beams height being a design variableIn order to make the structures deformation come close to the target shape curve,the least square error(LSE)between the deformed curve and the target curve is defined as the objective functionLSE is the sum of squares of position differences of various points along the curves Its expression is where I (=1,2,P)is the number of the points along the curves,P is the total number of pointsandare the coordinates of it h node on the target and deformed boundary curve respectivelyThe constraints are Where J (=1,2, )is the number of elements,miss the tota1 number of elements,hi the dimension variable,hmin and hmax are the lower and upper bounds of the element beam height for all elements with the value dependent on manufacturing,hb the height of the boundary elements, the maximumnoda1 deformation of the nodes on the curve boundary when the input point is inactive,and should be smaller thandto ensure structure stiffness,d the allowable maximum displacement when the input point is inactive,Omax the maximum stress of al1 the elements which must be smaller than Tj to prevent yielding,Tj the topology variable equal to 1,or else0 when the element is eliminated22 GA optimization GA is an optimization method which simulates the heuristic selection rule in nature,where the fittest living things have the most chance to survive,but the inferior ones also have the opportunity to exist Different from the continuous optimization method,it does not require the gradient-based information of the objective function. Every element could be expressed as a topology variable and a dimension variable Therefore,each individua1 could be coded as follows where ,2 is the number of elements except the boundary onesWith the same heights,the boundary elements throughout the optimizing process arerepresented by only one variable,hb.The fitness is the criterion of the GA optimizationIt could be transformed from the objective function into where is a coefficient deciding the compulsive selection of the betterindividua1The smaller the value,the more different would be between the two individualsfitness thus increasing the compulsiveness of choosing the individual of higher fitness The selection of control parameters plays an important role in the convergence of the GAGenerally speakingthe cross probability ranges 040099;the mutation probability is 0000 01-001and the number of individuals 1 0200 The variable would be updated through the crossover and mutation,so the possible design could generate in the GA process23 Finite element analysis(FEA) Because of the limited design variables and the target function,the optimization module of FEA software could not be used to design the compliant morphing mechanismTherefore,this paper programmed the GA in MATLAB and the FEA in ANSYSIn the FEA,taking only account of geometric nonlinearities and the material being of linear elasticity, ANSYS could solve the node displacements and the element stressesThen by deleting the elements with low stress,the fitness could be calculatedFig3 shows the detailed process Fig3 Flowchart of the structural optimization program24 Second optimizationAlthough the GA could optimize the topology and dimension simultaneously in a large solution space,the dimension usually could not directly converge to the optimizationIn order to solve this problem,after the GA,the Direct Search methodshould be used to find the best values of the input displacement and the dimensions of the elements which remain in the results after the GAFor morphing of compliant mechanism,F(xiàn)ig3describes the whole optimization processIt mainly contains initialization of the design domain,F(xiàn)EA,GA optimization and second optimization.3 Presentation of Results:Adopted from Ref,the sizes of the initial and the target trailing edge are reduced by sixty percent,I1ab1e 1 lists the design parameters.Because the displacement is used as the input,the nonlinear analysis could hardly converge and the stress of the initia1 solutions is very largeWhich should be considered after thirtieth generation.Table 1 Design parameters Fig4 and Fig5 illustrate the results from the GA optimization and the second optimization respectivelyFig4 Results after the GA optimization Fig5 Results after the second optimizationForm Table 2,it could be found that through the second optimization of the input displacement and the dimension,the LSE is reduced by 1352 8mmand improved by 313 The altered angle is increased by 1049 3Table 2 Results after the two optimization Fig6 Stability of final optimal structureFig6 shows the influences of the parameters when the outside distributed pressure load changes from 0 to 1 0 Nmm and the input displacement remains 1 1389 7 mm on the optimal structureIt could be seen that the optimal structure has a good stability if the load is kept in the range Of 05 NmmAs the external load exceeds 5 Nmm,the max stress is likely to exceed the yield stressBecause this optimization program is based on the M ATLAB and ANSYSin order to verify the resultsan attempt is made to introduce the analytical results of the optimized structure into ANSYS and PATRAN respectively, and then a comparison is made between themAs shown in Fig7 and Fig8,the two altered shapes are in good agreement:for in ANSYS the tip displacement is 5497mm and in PATRRAN 5450mmThe minor difference between them is from the software Fig7 Results of FEA in ANSYS Fig8 Results of FEA in PATRANOn the other hand,a model is made by wirecutting technology to verify the analytical resultsThe material of the mode1identical with that of the design,is 5 mm thickIn the experiment,the distributed pressure load is assumed to be zeroThe input displacement 11389 7mm with the required input load 146 NFig9 shows the model and the experimental resultThe altered angle is measured93。and the tip displacement 53mmThe altered shape well accords to the optimized resultIf a displacement of 113897mm is imposed on the model,the theoretical tip displacement is 54796 mm Because of the friction there is between the model and the experiment table a tiny difference will take place between the measured data and the calculated resultsFig9 The model and experimental result 4 Conclusions:Proved by the simulation and experiments,the proposed method to design morphing compliant mechanism is effectual in turning out a trailing edge with required morphing effects and ability of withstanding external loadsThe combination of MATLAB and ANSYS in the optimization renders the program simple and universa1There is no need for frequent changes of the rigid matrixIt also avoids the complexity of programming the nonlinear FEA and the transforming distributed loads into nodal loadsUsing the mixed code,the topology and the dimension could simultaneously be optimized by the GARemoving the free elements after the FEA could speed up the optimizationThe second optimization could improve the GA results 20
收藏
編號(hào):3535706
類型:共享資源
大?。?span id="eyg2kac" class="font-tahoma">1.08MB
格式:ZIP
上傳時(shí)間:2019-12-17
100
積分
- 關(guān) 鍵 詞:
-
裝配
懲罰
函數(shù)
二級(jí)
圓柱齒輪
減速器
優(yōu)化
設(shè)計(jì)
- 資源描述:
-
裝配圖懲罰函數(shù)法二級(jí)圓柱齒輪減速器的優(yōu)化設(shè)計(jì),裝配,懲罰,函數(shù),二級(jí),圓柱齒輪,減速器,優(yōu)化,設(shè)計(jì)
展開閱讀全文
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學(xué)習(xí)交流,未經(jīng)上傳用戶書面授權(quán),請(qǐng)勿作他用。