2019年高考數(shù)學新一輪復習 詳細分類題庫 考點42 拋物線(文、理)(含詳解13高考題) .doc
《2019年高考數(shù)學新一輪復習 詳細分類題庫 考點42 拋物線(文、理)(含詳解13高考題) .doc》由會員分享,可在線閱讀,更多相關(guān)《2019年高考數(shù)學新一輪復習 詳細分類題庫 考點42 拋物線(文、理)(含詳解13高考題) .doc(4頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019年高考數(shù)學新一輪復習 詳細分類題庫 考點42 拋物線(文、理)(含詳解,13高考題)一、選擇題1. (xx四川高考文科5)拋物線的焦點到直線的距離是( )A. B. C. D. 【解題指南】本題考查的是拋物線的基本幾何性質(zhì),在求解時首先求得拋物線的焦點坐標,然后利用點到直線的距離公式進行求解即可.【解析】選D,拋物線的焦點到直線的距離,根據(jù)點到直線的距離公式可得,故選D.2.(xx北京高考理科7)直線l過拋物線C:x2=4y的焦點且與y軸垂直,則l與C所圍成的圖形的面積等于( )A. B.2 C. D.【解題指南】把所求面積轉(zhuǎn)化為一個矩形面積減去一個積分值?!窘馕觥窟xC。的方程是,所以求面積相當于一個矩形面積減去一個積分值: .3.(xx新課標全國高考文科10)設(shè)拋物線的焦點為,直線過且與交于,兩點。若,則的方程為( )A.或 B.或C.或 D.或【解題指南】設(shè)出A、B點的坐標,利用拋物線的定義表示出,再利用,確立的方程.【解析】選C. 拋物線y2=4x的焦點坐標為(1,0),準線方程為x=-1,設(shè)A(x1,y1),B(x2,y2),則因為|AF|=3|BF|,所以x1+1=3(x2+1),所以x1=3x2+2,因為|y1|=3|y2|,x1=9x2,所以x1=3,x2=,當x1=3時,所以此時,若,則,此時,此時直線方程為。若,則,此時,此時直線方程為.4.(xx新課標全國高考理科T11)設(shè)拋物線C:y2=2px(p0)的焦點為F,點M在C上,|MF|=5,若以MF為直徑的圓過點(0,2),則C的方程為()A.y2=4x或y2=8x B.y2=2x或y2=8xC.y2=4x或y2=16x D.y2=2x或y2=16x【解題指南】結(jié)合已知條件,設(shè)出圓心坐標,然后借助拋物線的定義,確定拋物線的方程.【解析】選C.由題意知:F,準線方程為,則由拋物線的定義知,xM=,設(shè)以MF為直徑的圓的圓心為,所以圓的方程為又因為過點(0,2),所以yM=4,又因為點M在C上,所以16=2p,解得p=2或p=8,所以拋物線C的方程為y2=4x或y2=16x,故選C.5. (xx大綱版全國卷高考文科12)與(xx大綱版全國卷高考理科11)相同已知拋物線,兩點,若,則( )A. B. C. D.【解題指南】先求出拋物線的焦點,列出過焦點的直線方程,與拋物線聯(lián)立,化簡成關(guān)于的一元二次方程,利用根與系數(shù)關(guān)系代入求解.【解析】選D.由題意知直線的方程為,將其代入到得,設(shè),則,又,因為,所以,即.由得,.二、 填空題6.(xx北京高考文科9)若拋物線y2=2px的焦點坐標為(1,0)則p=_;準線方程為_【解題指南】利用拋物線的標準方程求解。【解析】。【答案】2,7.(xx浙江高考理科T15)設(shè)F為拋物線C:y2=4x的焦點,過點P(-1,0)的直線l交拋物線C于A,B兩點,點Q為線段AB的中點,若|FQ|=2,則直線l的斜率等于.【解題指南】由拋物線方程可知F的坐標,再利用待定系數(shù)法表示A,B兩點的坐標,根據(jù)|FQ|=2求解.【解析】設(shè)直線l:y=k(x+1),由消去y得,k2x2+(2k2-4)x+k2=0,設(shè)A(x1,y1),B(x2,y2),則,x1x2=1,設(shè)AB的中點Q(x0,y0),則,因為|FQ|=2,F(1,0),所以,所以k2=1,k=1.【答案】1.三、解答題8.(xx福建高考理科T18)如圖,在正方形OABC中,O為坐標原點,點A的坐標為,點C的坐標為,分別將線段OA和AB十等分,分點分別記為A1,A2,A9和B1,B2,B9,連接OBi,過Ai作x軸的垂線與OBi交于點(1)求證:點都在同一條拋物線上,并求拋物線E的方程.(2)過點C作直線l與拋物線E交于不同的兩點M,N,若OCM與OCN的面積之比為41,求直線l的方程.【解析】(1)依題意,過Ai(iN*,1i9)且與x軸垂直的直線方程為x=i,因為Bi(10,i),所以直線OBi的方程為y=x,設(shè)Pi坐標為(x,y),由得:y=x2,即x2=10y,所以Pi(iN*,1i9)都在同一條拋物線上,且拋物線E的方程為x2=10y.(2)依題意:直線l的斜率存在,設(shè)直線l的方程為y=kx+10,由得x2-10kx-100=0.此時=100k2+4000,直線l與拋物線E恒有兩個不同的交點M,N,設(shè):M(x1,y1),N(x2,y2),則因為SOCM=4SOCN,所以,又因為x1x20,所以圓心C的坐標為或,從而|CO|2=,|CO|=,即圓C的半徑為.10. (xx陜西高考理科20)已知動圓過定點A(4,0), 且在y軸上截得的弦MN的長為8. (1) 求動圓圓心的軌跡C的方程; (2) 已知點B(1,0), 設(shè)不垂直于x軸的直線與軌跡C交于不同的兩點P, Q, 若x軸是的角平分線, 證明直線過定點. 【解題指南】由弦長的一半,半徑和弦心距構(gòu)成直角三角形列出方程,化簡后得出軌跡C的方程;直線過定點可抓住該題的關(guān)鍵x軸是的角平分線,即解之.【解析】(1) A(4,0),設(shè)圓心,設(shè)圓心C(x,y),線段MN的中點為E,由幾何圖像知(2) 設(shè)直線l的方程為y=kx+b,聯(lián)立.設(shè),則若x軸是的角平分線,則 =即k=-b,故直線l的方程為y=k(x-1), 直線l過定點(1,0).11. (xx湖南高考理科21)過拋物線的焦點F作斜率分別為的兩條不同的直線,且,相交于點A,B,相交于點C,D.以AB,CD為直徑的圓M,圓N(M,N為圓心)的公共弦所在的直線記為.(1)若,證明;(2)若點M到直線的距離的最小值為,求拋物線E的方程.【解題指南】(1)先寫出過拋物線焦點的直線方程,然后和拋物線方程聯(lián)立消去y得到關(guān)于x的一元二次方程,利用根與系數(shù)的關(guān)系以及向量的坐標運算可得到結(jié)果.(2)利用拋物線的焦點弦長公式求出|AB|,此即圓M的直徑,進而可求出圓M的方程,同理可求出圓N的方程,再把兩圓的方程相減即得兩圓公共弦所在直線方程,于是代入條件即可求解.【解析】(1)由題意,拋物線E的焦點為,直線的方程為.由,得,設(shè)A,B兩點坐標分別為,則是上述方程的兩個實數(shù)根,從而,所以點M的坐標為,同理可得點N的坐標為, ,于是,由題設(shè),所以,故.(2)由拋物線的定義得,所以,從而圓M的半徑,故圓M的方程為,化簡得同理可得圓N的方程為.于是圓M,圓N的公共弦所在直線l的方程為,又,則的方程為,因為,所以點M到直線l的距離,故當時,取最小值,由題設(shè),解得,故所求拋物線E的方程為.- 1.請仔細閱讀文檔,確保文檔完整性,對于不預覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領(lǐng)!既往收益都歸您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019年高考數(shù)學新一輪復習 詳細分類題庫 考點42 拋物線文、理含詳解13高考題 2019 年高 數(shù)學 一輪 復習 詳細 分類 題庫 考點 42 拋物線 詳解 13 考題
鏈接地址:http://italysoccerbets.com/p-3250816.html