2019-2020年高三數(shù)學(xué)第一輪復(fù)習(xí)單元講座 第02講 函數(shù)概念與表示教案 新人教版.doc
《2019-2020年高三數(shù)學(xué)第一輪復(fù)習(xí)單元講座 第02講 函數(shù)概念與表示教案 新人教版.doc》由會員分享,可在線閱讀,更多相關(guān)《2019-2020年高三數(shù)學(xué)第一輪復(fù)習(xí)單元講座 第02講 函數(shù)概念與表示教案 新人教版.doc(12頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高三數(shù)學(xué)第一輪復(fù)習(xí)單元講座 第02講 函數(shù)概念與表示教案 新人教版一課標(biāo)要求1通過豐富實例,進(jìn)一步體會函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習(xí)用集合與對應(yīng)的語言來刻畫函數(shù),體會對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用;了解構(gòu)成函數(shù)的要素,會求一些簡單函數(shù)的定義域和值域;了解映射的概念;2在實際情境中,會根據(jù)不同的需要選擇恰當(dāng)?shù)姆椒ǎㄈ鐖D象法、列表法、解析法)表示函數(shù);3通過具體實例,了解簡單的分段函數(shù),并能簡單應(yīng)用;4通過已學(xué)過的函數(shù)特別是二次函數(shù),理解函數(shù)的單調(diào)性、最大(小)值及其幾何意義;結(jié)合具體函數(shù),了解奇偶性的含義;5學(xué)會運(yùn)用函數(shù)圖象理解和研究函數(shù)的性質(zhì)。二命題走向函數(shù)是整個高中數(shù)學(xué)的重點(diǎn),其中函數(shù)思想是最重要的數(shù)學(xué)思想方法,函數(shù)問題在歷年的高考中都占據(jù)相當(dāng)大的比例。從近幾年來看,對本部分內(nèi)容的考察形勢穩(wěn)中求變,向著更靈活的的方向發(fā)展,對于函數(shù)的概念及表示多以下面的形式出現(xiàn):通過具體問題(幾何問題、實際應(yīng)用題)找出變量間的函數(shù)關(guān)系,再求出函數(shù)的定義域、值域,進(jìn)而研究函數(shù)性質(zhì),尋求問題的結(jié)果。高考對函數(shù)概念與表示考察是以選擇或填空為主,以解答題形式出現(xiàn)的可能性相對較小,本節(jié)知識作為工具和其他知識結(jié)合起來命題的可能性依然很大。預(yù)測xx年高考對本節(jié)的考察是:1題型是1個選擇和一個填空;2熱點(diǎn)是函數(shù)概念及函數(shù)的工具作用,以中等難度、題型新穎的試題綜合考察函數(shù)成為新的熱點(diǎn)。三要點(diǎn)精講1函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應(yīng),那么就稱f:AB為從集合A到集合B的一個函數(shù)。記作:y=f(x),xA。其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合f(x)| xA 叫做函數(shù)的值域。注意:(1)“y=f(x)”是函數(shù)符號,可以用任意的字母表示,如“y=g(x)”;(2)函數(shù)符號“y=f(x)”中的f(x)表示與x對應(yīng)的函數(shù)值,一個數(shù),而不是f乘x。2構(gòu)成函數(shù)的三要素:定義域、對應(yīng)關(guān)系和值域(1)解決一切函數(shù)問題必須認(rèn)真確定該函數(shù)的定義域,函數(shù)的定義域包含三種形式:自然型:指函數(shù)的解析式有意義的自變量x的取值范圍(如:分式函數(shù)的分母不為零,偶次根式函數(shù)的被開方數(shù)為非負(fù)數(shù),對數(shù)函數(shù)的真數(shù)為正數(shù),等等);限制型:指命題的條件或人為對自變量x的限制,這是函數(shù)學(xué)習(xí)中重點(diǎn),往往也是難點(diǎn),因為有時這種限制比較隱蔽,容易犯錯誤;實際型:解決函數(shù)的綜合問題與應(yīng)用問題時,應(yīng)認(rèn)真考察自變量x的實際意義。(2)求函數(shù)的值域是比較困難的數(shù)學(xué)問題,中學(xué)數(shù)學(xué)要求能用初等方法求一些簡單函數(shù)的值域問題。配方法(將函數(shù)轉(zhuǎn)化為二次函數(shù));判別式法(將函數(shù)轉(zhuǎn)化為二次方程);不等式法(運(yùn)用不等式的各種性質(zhì));函數(shù)法(運(yùn)用基本函數(shù)性質(zhì),或抓住函數(shù)的單調(diào)性、函數(shù)圖象等)。3兩個函數(shù)的相等:函數(shù)的定義含有三個要素,即定義域A、值域C和對應(yīng)法則f。當(dāng)函數(shù)的定義域及從定義域到值域的對應(yīng)法則確定之后,函數(shù)的值域也就隨之確定。因此,定義域和對應(yīng)法則為函數(shù)的兩個基本條件,當(dāng)且僅當(dāng)兩個函數(shù)的定義域和對應(yīng)法則都分別相同時,這兩個函數(shù)才是同一個函數(shù)。4區(qū)間(1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間;(2)無窮區(qū)間;(3)區(qū)間的數(shù)軸表示。5映射的概念一般地,設(shè)A、B是兩個非空的集合,如果按某一個確定的對應(yīng)法則f,使對于集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應(yīng),那么就稱對應(yīng)f:AB為從集合A到集合B的一個映射。記作“f:AB”。函數(shù)是建立在兩個非空數(shù)集間的一種對應(yīng),若將其中的條件“非空數(shù)集”弱化為“任意兩個非空集合”,按照某種法則可以建立起更為普通的元素之間的對應(yīng)關(guān)系,這種的對應(yīng)就叫映射。注意:(1)這兩個集合有先后順序,A到B的射與B到A的映射是截然不同的其中f表示具體的對應(yīng)法則,可以用漢字?jǐn)⑹?。?)“都有唯一”什么意思?包含兩層意思:一是必有一個;二是只有一個,也就是說有且只有一個的意思。6常用的函數(shù)表示法(1)解析法:就是把兩個變量的函數(shù)關(guān)系,用一個等式來表示,這個等式叫做函數(shù)的解析表達(dá)式,簡稱解析式;(2)列表法:就是列出表格來表示兩個變量的函數(shù)關(guān)系;(3)圖象法:就是用函數(shù)圖象表示兩個變量之間的關(guān)系。7分段函數(shù)若一個函數(shù)的定義域分成了若干個子區(qū)間,而每個子區(qū)間的解析式不同,這種函數(shù)又稱分段函數(shù);8復(fù)合函數(shù)若y=f(u),u=g(x),x(a,b),u(m,n),那么y=fg(x)稱為復(fù)合函數(shù),u稱為中間變量,它的取值范圍是g(x)的值域。四典例解析題型1:函數(shù)概念例1(1)設(shè)函數(shù)(2)(xx上海理,1)設(shè)函數(shù)f(x),則滿足f(x)=的x值為 。解:(1)這是分段函數(shù)與復(fù)合函數(shù)式的變換問題,需要反復(fù)進(jìn)行數(shù)值代換, = =(2)當(dāng)x(,1,值域應(yīng)為,當(dāng)x(1,)時值域應(yīng)為(0,),y,y(0,),此時x(1,),log81x,x813。點(diǎn)評:討論了函數(shù)的解析式的一些常用的變換技巧(賦值、變量代換、換元等等),這都是函數(shù)學(xué)習(xí)的常用基本功。變式題:(xx山東 文2)設(shè)( )A0 B1 C2 D3解:選項為C。例2(xx安徽 文理15)(1)函數(shù)對于任意實數(shù)滿足條件,若則_ _;(2)函數(shù)對于任意實數(shù)滿足條件,若則_。解:(1)由得,所以,則。(2)由得,所以,則。點(diǎn)評:通過對抽象函數(shù)的限制條件,變量換元得到函數(shù)解析式,考察學(xué)生的邏輯思維能力。題型二:判斷兩個函數(shù)是否相同例3試判斷以下各組函數(shù)是否表示同一函數(shù)?(1)f(x)=,g(x)=;(2)f(x)=,g(x)=(3)f(x)=,g(x)=()2n1(nN*);(4)f(x)=,g(x)=;(5)f(x)=x22x1,g(t)=t22t1。解:(1)由于f(x)=|x|,g(x)=x,故它們的值域及對應(yīng)法則都不相同,所以它們不是同一函數(shù);(2)由于函數(shù)f(x)=的定義域為(,0)(0,+),而g(x)=的定義域為R,所以它們不是同一函數(shù);(3)由于當(dāng)nN*時,2n1為奇數(shù),f(x)=x,g(x)=()2n1=x,它們的定義域、值域及對應(yīng)法則都相同,所以它們是同一函數(shù);(4)由于函數(shù)f(x)=的定義域為x|x0,而g(x)=的定義域為x|x1或x0,它們的定義域不同,所以它們不是同一函數(shù);(5)函數(shù)的定義域、值域和對應(yīng)法則都相同,所以它們是同一函數(shù)。點(diǎn)評:對于兩個函數(shù)y=f(x)和y=g(x),當(dāng)且僅當(dāng)它們的定義域、值域、對應(yīng)法則都相同時,y=f(x)和y=g(x)才表示同一函數(shù)若兩個函數(shù)表示同一函數(shù),則它們的圖象完全相同,反之亦然。(1)第(5)小題易錯判斷成它們是不同的函數(shù),原因是對函數(shù)的概念理解不透要知道,在函數(shù)的定義域及對應(yīng)法則f不變的條件下,自變量變換字母,以至變換成其他字母的表達(dá)式,這對于函數(shù)本身并無影響,比如f(x)=x2+1,f(t)=t2+1,f(u+1)=(u+1)2+1都可視為同一函數(shù)。(2)對于兩個函數(shù)來講,只要函數(shù)的三要素中有一要素不相同,則這兩個函數(shù)就不可能是同一函數(shù)。題型三:函數(shù)定義域問題例4求下述函數(shù)的定義域:(1);(2)解:(1),解得函數(shù)定義域為.(2) ,(先對a進(jìn)行分類討論,然后對k進(jìn)行分類討論),當(dāng)a=0時,函數(shù)定義域為;當(dāng)時,得,1)當(dāng)時,函數(shù)定義域為,2)當(dāng)時,函數(shù)定義域為,3)當(dāng)時,函數(shù)定義域為;當(dāng)時,得,1)當(dāng)時,函數(shù)定義域為,2)當(dāng)時,函數(shù)定義域為,3)當(dāng)時,函數(shù)定義域為。點(diǎn)評:在這里只需要根據(jù)解析式有意義,列出不等式,但第(2)小題的解析式中含有參數(shù),要對參數(shù)的取值進(jìn)行討論,考察學(xué)生分類討論的能力。例5已知函數(shù)定義域為(0,2),求下列函數(shù)的定義域:(1) ;(2)。解:(1)由0x2, 得 點(diǎn)評:本例不給出f(x)的解析式,即由f(x)的定義域求函數(shù)fg(x)的定義域關(guān)鍵在于理解復(fù)合函數(shù)的意義,用好換元法;求函數(shù)定義域的第三種類型是一些數(shù)學(xué)問題或?qū)嶋H問題中產(chǎn)生的函數(shù)關(guān)系,求其定義域,后面還會涉及到。變式題:已知函數(shù)f(x)=的定義域是R,則實數(shù)a的取值范圍是( )AaB12a0C12a0Da解:由a=0或可得12a0,答案B。題型四:函數(shù)值域問題例5求下列函數(shù)的值域:(1);(2);(3);(4);(5);(6);(7);(8);(9)。解:(1)(配方法),的值域為。改題:求函數(shù),的值域。解:(利用函數(shù)的單調(diào)性)函數(shù)在上單調(diào)增,當(dāng)時,原函數(shù)有最小值為;當(dāng)時,原函數(shù)有最大值為。函數(shù),的值域為。(2)求復(fù)合函數(shù)的值域:設(shè)(),則原函數(shù)可化為。又,故,的值域為。(3)(法一)反函數(shù)法:的反函數(shù)為,其定義域為,原函數(shù)的值域為。(法二)分離變量法:,函數(shù)的值域為。(4)換元法(代數(shù)換元法):設(shè),則,原函數(shù)可化為,原函數(shù)值域為。注:總結(jié)型值域,變形:或(5)三角換元法:,設(shè),則,原函數(shù)的值域為。(6)數(shù)形結(jié)合法:,函數(shù)值域為。(7)判別式法:恒成立,函數(shù)的定義域為。由得: 當(dāng)即時,即,當(dāng)即時,時方程恒有實根,且,原函數(shù)的值域為。(8),當(dāng)且僅當(dāng)時,即時等號成立。,原函數(shù)的值域為。(9)(法一)方程法:原函數(shù)可化為:,(其中),原函數(shù)的值域為。點(diǎn)評:上面討論了用初等方法求函數(shù)值域的一些常見類型與方法,在現(xiàn)行的中學(xué)數(shù)學(xué)要求中,求值域要求不高,要求較高的是求函數(shù)的最大與最小值,在后面的復(fù)習(xí)中要作詳盡的討論。題型五:函數(shù)解析式例6(1)已知,求;(2)已知,求;(3)已知是一次函數(shù),且滿足,求;(4)已知滿足,求。解:(1),(或)。(2)令(),則,。(3)設(shè),則,。(4) ,把中的換成,得 ,得,。點(diǎn)評:第(1)題用配湊法;第(2)題用換元法;第(3)題已知一次函數(shù),可用待定系數(shù)法;第(4)題用方程組法。例7(xx重慶理21)已知定義域為R的函數(shù)f(x)滿足f(f(x)x2+x)=f(x)x2+x。()若f(2)=3,求f(1);又若f(0)=a,求f(a);()設(shè)有且僅有一個實數(shù)x0,使得f(x0)= x0。求函數(shù)f(x)的解析表達(dá)式。解:()因為對任意xR,有f(f(x)x2 + x)=f(x)x2 +x,所以f(f(2)22+2)=f(2)22+2。又由f(2)=3,得f(322+2)322+2,即f(1)=1。若f(0)=a,則f(a02+0)=a02+0,即f(a)=a。()因為對任意xR,有f(f(x) x2 +x)=f(x) x2 +x。又因為有且只有一個實數(shù)x0,使得f(x0) x0。所以對任意xR,有f(x) x2 +x= x0.。在上式中令x= x0,有f(x0)x + x0= x0。又因為f(x0) x0,所以x0x=0,故x0=0或x0=1。若x0=0,則f(x) x2 +x=0,即f(x)= x2 x。但方程x2 x=x有兩上不同實根,與題設(shè)條件矛質(zhì),故x20。若x2=1,則有f(x) x2 +x=1,即f(x)= x2 x+1。易驗證該函數(shù)滿足題設(shè)條件。綜上,所求函數(shù)為f(x)= x2 x+1(xR)。點(diǎn)評:該題的題設(shè)條件是一個抽象函數(shù),通過應(yīng)用條件進(jìn)一步縮小函數(shù)的范圍得到函數(shù)的解析式。這需要考生有很深的函數(shù)理論功底。題型六:函數(shù)應(yīng)用例8(xx北京春,理文21)某租賃公司擁有汽車100輛.當(dāng)每輛車的月租金為3000元時,可全部租出。當(dāng)每輛車的月租金每增加50元時,未租出的車將會增加一輛。租出的車每輛每月需要維護(hù)費(fèi)150元,未租出的車每輛每月需要維護(hù)費(fèi)50元。(1)當(dāng)每輛車的月租金定為3600元時,能租出多少輛車?(2)當(dāng)每輛車的月租金定為多少元時,租賃公司的月收益最大?最大月收益是多少?解:(1)當(dāng)每輛車的月租金定為3600元時,未租出的車輛數(shù)為: =12,所以這時租出了88輛車。(2)設(shè)每輛車的月租金定為x元,則租賃公司的月收益為:f(x)=(100)(x150)50,整理得:f(x)=+162x21000=(x4050)2+307050。所以,當(dāng)x=4050時,f(x)最大,其最大值為f(4050)=307050。即當(dāng)每輛車的月租金定為4050元時,租賃公司的月收益最大,最大收益為307050元.點(diǎn)評:根據(jù)實際問題求函數(shù)表達(dá)式,是應(yīng)用函數(shù)知識解決實際問題的基礎(chǔ),在設(shè)定或選定變量去尋求等量關(guān)系并求得函數(shù)表達(dá)式后,還要注意函數(shù)定義域常受到實際問題本身的限制。例9(xx湖南 理20)對1個單位質(zhì)量的含污物體進(jìn)行清洗,清洗前其清潔度(含污物體的清潔度定義為:為,要求清洗完后的清潔度為。有兩種方案可供選擇,方案甲:一次清洗;方案乙:分兩次清洗。該物體初次清洗后受殘留水等因素影響,其質(zhì)量變?yōu)椤TO(shè)用單位質(zhì)量的水初次清洗后的清潔度是,用單位質(zhì)量的水第二次清洗后的清潔度是,其中是該物體初次清洗后的清潔度。()分別求出方案甲以及時方案乙的用水量,并比較哪一種方案用水量較少;()若采用方案乙, 當(dāng)為某固定值時, 如何安排初次與第二次清洗的用水量,使總用水量最小? 并討論取不同數(shù)值時對最少總用水量多少的影響。解:()設(shè)方案甲與方案乙的用水量分別為x與z。由題設(shè)有=0.99,解得x=19。由得方案乙初次用水量為3, 第二次用水量y滿足方程: 解得y=4,故z=4+3.即兩種方案的用水量分別為19與4+3。因為當(dāng),故方案乙的用水量較少。(II)設(shè)初次與第二次清洗的用水量分別為與,類似(I)得,(*)于是+當(dāng)為定值時,當(dāng)且僅當(dāng)時等號成立。此時將代入(*)式得故時總用水量最少, 此時第一次與第二次用水量分別為,最少總用水量是。當(dāng),故T()是增函數(shù)(也可以用二次函數(shù)的單調(diào)性判斷)。這說明,隨著的值的最少總用水量, 最少總用水量最少總用水量。點(diǎn)評:本題貼近生活。要求考生讀懂題目,迅速準(zhǔn)確建立數(shù)學(xué)模型,把實際問題轉(zhuǎn)化為數(shù)學(xué)問題并加以解決。該題典型代表高考的方向。題型7:課標(biāo)創(chuàng)新題例10(1)設(shè),其中a、b、c、d是常數(shù)。如果求;(2)若不等式對滿足的所有m都成立,求x的取值范圍。解:(1)構(gòu)造函數(shù)則故:(2)原不等式可化為構(gòu)造函數(shù),其圖象是一條線段。根據(jù)題意,只須:即解得。點(diǎn)評:上面兩個題目通過重新構(gòu)造函數(shù)解決了實際問題,體現(xiàn)了函數(shù)的工具作用。五思維總結(jié)“函數(shù)”是數(shù)學(xué)中最重要的概念之一,學(xué)習(xí)函數(shù)的概念首先要掌握函數(shù)三要素的基本內(nèi)容與方法。由給定函數(shù)解析式求其定義域這類問題的代表,實際上是求使給定式有意義的x的取值范圍它依賴于對各種式的認(rèn)識與解不等式技能的熟練。1求函數(shù)解析式的題型有:(1)已知函數(shù)類型,求函數(shù)的解析式:待定系數(shù)法;(2)已知求或已知求:換元法、配湊法;(3)已知函數(shù)圖像,求函數(shù)解析式;(4)滿足某個等式,這個等式除外還有其他未知量,需構(gòu)造另個等式:解方程組法;(5)應(yīng)用題求函數(shù)解析式常用方法有待定系數(shù)法等。2求函數(shù)定義域一般有三類問題:(1)給出函數(shù)解析式的:函數(shù)的定義域是使解析式有意義的自變量的取值集合;(2)實際問題:函數(shù)的定義域的求解除要考慮解析式有意義外,還應(yīng)考慮使實際問題有意義;(3)已知的定義域求的定義域或已知的定義域求的定義域:掌握基本初等函數(shù)(尤其是分式函數(shù)、無理函數(shù)、對數(shù)函數(shù)、三角函數(shù))的定義域;若已知的定義域,其復(fù)合函數(shù)的定義域應(yīng)由解出。3求函數(shù)值域的各種方法函數(shù)的值域是由其對應(yīng)法則和定義域共同決定的。其類型依解析式的特點(diǎn)分可分三類:(1)求常見函數(shù)值域;(2)求由常見函數(shù)復(fù)合而成的函數(shù)的值域;(3)求由常見函數(shù)作某些“運(yùn)算”而得函數(shù)的值域。直接法:利用常見函數(shù)的值域來求一次函數(shù)y=ax+b(a0)的定義域為R,值域為R;反比例函數(shù)的定義域為x|x0,值域為y|y0;二次函數(shù)的定義域為R,當(dāng)a0時,值域為;當(dāng)a0時,值域為。配方法:轉(zhuǎn)化為二次函數(shù),利用二次函數(shù)的特征來求值;常轉(zhuǎn)化為型如:的形式;分式轉(zhuǎn)化法(或改為“分離常數(shù)法”)換元法:通過變量代換轉(zhuǎn)化為能求值域的函數(shù),化歸思想;三角有界法:轉(zhuǎn)化為只含正弦、余弦的函數(shù),運(yùn)用三角函數(shù)有界性來求值域;基本不等式法:轉(zhuǎn)化成型如:,利用平均值不等式公式來求值域;單調(diào)性法:函數(shù)為單調(diào)函數(shù),可根據(jù)函數(shù)的單調(diào)性求值域。數(shù)形結(jié)合:根據(jù)函數(shù)的幾何圖形,利用數(shù)型結(jié)合的方法來求值域。- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高三數(shù)學(xué)第一輪復(fù)習(xí)單元講座 第02講 函數(shù)概念與表示教案 新人教版 2019 2020 年高 數(shù)學(xué) 第一輪 復(fù)習(xí) 單元 講座 02 函數(shù) 概念 表示 教案 新人
鏈接地址:http://italysoccerbets.com/p-2663819.html