2019-2020年高中數(shù)學 2.3《等差數(shù)列的前n項和》教案(1課時) 新人教A版必修5.doc
《2019-2020年高中數(shù)學 2.3《等差數(shù)列的前n項和》教案(1課時) 新人教A版必修5.doc》由會員分享,可在線閱讀,更多相關《2019-2020年高中數(shù)學 2.3《等差數(shù)列的前n項和》教案(1課時) 新人教A版必修5.doc(2頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學 2.3等差數(shù)列的前n項和教案(1課時) 新人教A版必修5三維目標知識與技能:掌握等差數(shù)列前n項和公式及其獲取思路;會用等差數(shù)列的前n項和公式解決一些簡單的與前n項和有關的問題過程與方法:通過公式的推導和公式的運用,使學生體會從特殊到一般,再從一般到特殊的思維規(guī)律,初步形成認識問題,解決問題的一般思路和方法;通過公式推導的過程教學,對學生進行思維靈活性與廣闊性的訓練,發(fā)展學生的思維水平.情感態(tài)度與價值觀:通過公式的推導過程,展現(xiàn)數(shù)學中的對稱美。教學重點等差數(shù)列n項和公式的理解、推導及應教學難點靈活應用等差數(shù)列前n項公式解決一些簡單的有關問題教學過程.課題導入“小故事”:高斯是偉大的數(shù)學家,天文學家,高斯十歲時,有一次老師出了一道題目,老師說: “現(xiàn)在給大家出道題目:1+2+100=?”過了兩分鐘,正當大家在:1+2=3;3+3=6;4+6=10算得不亦樂乎時,高斯站起來回答說:“1+2+3+100=5050。教師問:“你是如何算出答案的?高斯回答說:因為1+100=101;2+99=101;50+51=101,所以10150=5050” 這個故事告訴我們:(1)作為數(shù)學王子的高斯從小就善于觀察,敢于思考,所以他能從一些簡單的事物中發(fā)現(xiàn)和尋找出某些規(guī)律性的東西。(2)該故事還告訴我們求等差數(shù)列前n項和的一種很重要的思想方法,這就是下面我們要介紹的“倒序相加”法。.講授新課1等差數(shù)列的前項和公式1:證明: +: 由此得: 從而我們可以驗證高斯十歲時計算上述問題的正確性 2 等差數(shù)列的前項和公式2: 用上述公式要求必須具備三個條件: 但 代入公式1即得: 此公式要求必須已知三個條件: (有時比較有用)范例講解課本P49-50的例1、例2、例3由例3得與之間的關系:由的定義可知,當n=1時,=;當n2時,=-,即=.課堂練習課本P52練習1、2、3、4.課時小結本節(jié)課學習了以下內(nèi)容:1.等差數(shù)列的前項和公式1: 2.等差數(shù)列的前項和公式2: .課后作業(yè)板書設計授后記- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 等差數(shù)列的前n項和 2019-2020年高中數(shù)學 2.3等差數(shù)列的前n項和教案1課時 新人教A版必修5 2019 2020 年高 數(shù)學 2.3 等差數(shù)列 教案 課時 新人 必修
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權,請勿作他用。
相關資源
更多
正為您匹配相似的精品文檔
鏈接地址:http://italysoccerbets.com/p-2626879.html