2019-2020年高中數(shù)學(xué) 4.1.1《曲邊梯形的面積》教案 北師大版選修2-2.doc
《2019-2020年高中數(shù)學(xué) 4.1.1《曲邊梯形的面積》教案 北師大版選修2-2.doc》由會員分享,可在線閱讀,更多相關(guān)《2019-2020年高中數(shù)學(xué) 4.1.1《曲邊梯形的面積》教案 北師大版選修2-2.doc(3頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學(xué) 4.1.1曲邊梯形的面積教案 北師大版選修2-2一、教學(xué)目標(biāo):理解求曲邊圖形面積的過程:分割、以直代曲、逼近,感受在其過程中滲透的思想方法。二、教學(xué)重難點:重點:掌握過程步驟:分割、以直代曲、求和、逼近(取極限)難點:對過程中所包含的基本的微積分 “以直代曲”的思想的理解三、教學(xué)方法:探析歸納,講練結(jié)合四、教學(xué)過程1、創(chuàng)設(shè)情景我們學(xué)過如何求正方形、長方形、三角形等的面積,這些圖形都是由直線段圍成的。那么,如何求曲線圍成的平面圖形的面積呢?這就是定積分要解決的問題。定積分在科學(xué)研究和實際生活中都有非常廣泛的應(yīng)用。本節(jié)我們將學(xué)習(xí)定積分的基本概念以及定積分的簡單應(yīng)用,初步體會定積分的思想及其應(yīng)用價值。一個概念:如果函數(shù)在某一區(qū)間上的圖像是一條連續(xù)不斷的曲線,那么就把函數(shù)稱為區(qū)間上的連續(xù)函數(shù)(不加說明,下面研究的都是連續(xù)函數(shù))2、新課探析問題:如圖,陰影部分類似于一個梯形,但有一邊是曲線的一段,我們把由直線和曲線所圍成的圖形稱為曲邊梯形如何計算這個曲邊梯形的面積? 例題:求圖中陰影部分是由拋物線,直線以及軸所圍成的平面圖形的面積S。 思考:(1)曲邊梯形與“直邊圖形”的區(qū)別?(2)能否將求這個曲邊梯形面積S的問題轉(zhuǎn)化為求“直邊圖形”面積的問題?分析:曲邊梯形與“直邊圖形”的主要區(qū)別:曲邊梯形有一邊是曲線段,“直邊圖形”的所有邊都是直線段“以直代曲”的思想的應(yīng)用xxx1 x1 xy1 xyy 把區(qū)間分成許多個小區(qū)間,進(jìn)而把區(qū)邊梯形拆為一些小曲邊梯形,對每個小曲邊梯形“以直代取”,即用矩形的面積近似代替小曲邊梯形的面積,得到每個小曲邊梯形面積的近似值,對這些近似值求和,就得到曲邊梯形面積的近似值分割越細(xì),面積的近似值就越精確。當(dāng)分割無限變細(xì)時,這個近似值就無限逼近所求曲邊梯形的面積S也即:用劃歸為計算矩形面積和逼近的思想方法求出曲邊梯形的面積解:(1)分割在區(qū)間上等間隔地插入個點,將區(qū)間等分成個小區(qū)間:, 記第個區(qū)間為,其長度為分別過上述個分點作軸的垂線,從而得到個小曲邊梯形,他們的面積分別記作: ,顯然,(2)近似代替記,如圖所示,當(dāng)很大,即很小時,在區(qū)間上,可以認(rèn)為函數(shù)的值變化很小,近似的等于一個常數(shù),不妨認(rèn)為它近似的等于左端點處的函數(shù)值,從圖形上看,就是用平行于軸的直線段近似的代替小曲邊梯形的曲邊(如圖)這樣,在區(qū)間上,用小矩形的面積近似的代替,即在局部范圍內(nèi)“以直代取”,則有 (3)求和:由,上圖中陰影部分的面積為=,從而得到的近似值 (4)取極限:分別將區(qū)間等分8,16,20,等份(如圖),可以看到,當(dāng)趨向于無窮大時,即趨向于0時,趨向于,從而有從數(shù)值上的變化趨勢: 3求曲邊梯形面積的四個步驟:第一步:分割在區(qū)間中任意插入各分點,將它們等分成個小區(qū)間,區(qū)間的長度,第二步:近似代替,“以直代取”。用矩形的面積近似代替小曲邊梯形的面積,求出每個小曲邊梯形面積的近似值第三步:求和第四步:取極限。- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該PPT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 曲邊梯形的面積 2019-2020年高中數(shù)學(xué) 4.1.1曲邊梯形的面積教案 北師大版選修2-2 2019 2020 年高 數(shù)學(xué) 4.1 梯形 面積 教案 北師大 選修
鏈接地址:http://italysoccerbets.com/p-2367481.html