蘋果切片機(jī)的設(shè)計
購買設(shè)計請充值后下載,資源目錄下的文件所見即所得,都可以點開預(yù)覽,資料完整,充值下載可得到資源目錄里的所有文件?!咀ⅰ浚篸wg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無水印,可編輯。具體請見文件預(yù)覽,有不明白之處,可咨詢QQ:12401814
南華大學(xué)機(jī)械工程學(xué)院畢業(yè)設(shè)計(論文)Study and Improvement for Slice Smoothness in Slicing Machine of Lotus Root De-yong YANG ,Jian-ping HU , En-zhu WEI , Heng-qun LEI ,and Xiang-ci KONG Key Laboratory of Modern Agricultural Equipment and Technology Ministry of Education Jiangsu Province Jiangsu University . Zhenjiang .Jiangsu Province .P.R.China212013Tel.: +86-511-8;Fax:+86-511-8yangdy163.comJinhu Agricultural Mechanization Technology Extension Station . Jinhu countyJiangsu Province .P.R.China 211600Abstract: Concerning the problem of the low cutting quality and the bevel edge in the piece of lotus root, the reason was analyzed and the method of improvement was to reduce the force in the vertical direction of link to knife. 3D parts and assemblies of cutting mechanism in slicing machine of lotus were created under PRO/E circumstance. Based on virtual prototype technology, the kinematics and dynamics analysis of cutting mechanism was simulated with ADAMS software, the best slice of time that is 0.2s0.3s was obtained,and the curve of the force in the vertical direction of link to knife was obtained. The vertical force of knife was changed according with the change of the offset distance of crank. Optimization results of the offest distance of crank showed the vertical force in slice time almost is zero when the offset distance of crank is -80mm. Tests show that relative error of thickness of slicing is less than 10% after improved design, which is able to fully meet the technical requirements. Keywords: lotus root; cutting mechanism; smoothness; optimization 1 Introduction China is a country of producing lotus toot, lotus root system of semi-finished products of domestic consumption and external demand for exports is relatively large. In order to improve efficiency, reduce labor intensity, the group work, drawing on the principle of the artificial slice based on the design and development of a new type of lotus root slice (Bi Wei and Hu Jianping, 2006). This new type of slice solved easily broken cutting, stick knives, hard to clean up and other issues, but the process appears less smooth cutting, and some have a problem of hypotenuse piece of root. In this paper, analyzing cutting through the course of slice knife, the reasons causing hypotenuse was found, and the corresponding improvement of methods was proposed and was verified by the experiments.2 Structure of Cutting Mechanism of Slicing Machine Cutting mechanism of the quality of slice lotus root is the core of the machine, the performance of its direct impact on the quality of slice. Virtual prototyping of cutting mechanism of slice lotus root (Fig.1) was built by using PRO/E, and mechanism diagram of the body is shown in Fig.2. Cutting principle of lotus slicer adopted in the cardiac type of slider-crank mechanism was to add materials inside, which can be stacked several lotus root, lotus root to rely on the upper part of the self and the lower part of the lotus press down, so that it arrives in the material under the surface of the baffle. While slider-crank mechanism was driven by motor, the knife installed on the slider cut lotus root. In the slice-cutting process it was found that parallelism of the surface at both ends of part of piece lotus was not enough, which can not meet the technical requirements for processing.Fig.1 Virtual prototyping of cutting mechanismFig.2 Diagram of cutting mechanism Study and improvement for slice smoothness in slicing machine of lotus root.3 The Cause of the Bevel Edge Uneven thickness and bevel edge of cutting were related with forces on the slice knife in the process of cutting. In accordance with cutting mechanism (Fig.2), without taking into account the friction and weight, the direction of force F of point C was along the link. Force F may be decomposed with a horizontal direction force component and a vertical direction force component. The horizontal force component pushed the knife moving for cutting, but the vertical force component caused the knife moving along the vertical direction. Because of the gap between the slider and the rail, the vertical force component made the blade deforming during the movement, and knife could not move along the horizontal direction to cut lotus root, which caused the emergence of bevel edge. Thus, to reduce or eliminate the vertical force component in the cutting-chip was key to solve the problem of bevel edge and improve the quality of cutting.When crank speed was 6990r/min, the horizontal and vertical direction of the force curve of point C connecting link and the blade hinge are shown in Fig.3 and Fig.4 respectively. As can be seen from the chart, with the crank speed improvement the horizontal and vertical direction of the force in point C also increased. The horizontal force changed relatively stable during 0s0.2s, which was conducive to cutting lotus, but the vertical force increased gradually. The more the vertical force was, the more detrimental to the quality cutting. Fig.3 Horizontal force of CFig.4 Vertical force of C4 Simulation and Optimization If improving flatness of the slicer, the structure was optimized to reduce the vertical force component, so as far as possible the level of cutting blade.When crank speed was 6090r/min the velocity curve and acceleration curve of the knife center of mass are shown in Fig.5 and Fig.6 respectively. According to the speed curve, the speed of the knife center of mass was relatively large in a period of 0.2s0.3s. In accordance with the requirements that the knife should have a higher speed during cutting lotus, so this period time was more advantageous to cutting than other terms. According to acceleration curve. When calculates by one cycle, the acceleration value was relatively quite small in the period of time, 0.15s0.3s compared with other time section. Which indicated that the change of velocity was relatively small, simultaneously the force of inertia was small, and the influence of vibration caused by the force was small to the slicer. Therefore,this period of time, 0.2s0.3s, to cut root piece was advantageous in enhances the cutting quality of lotus root piece.Fig.5 Velocity curve of center of mass of knife Fig.6 Acceleration curve of center of mass of knife Based on the above analysis, the vertical force component between link and the knife was the main reason for bevel edge. According to the characteristics of slider-crank mechanism, reducing the vertical force on the knife in the period of cutting time by altering crank offest was tried to enhance the quality of the cutting. When crank speed was 60r/min, the crank eccentricity was optimized. When the offest of the crank was 40mm, 20mm, 0mm, -20mm, -40mm, -80mm, -120mm respectively, the mechanism was simulated and the vertical force curves under different crank eccentricity were obtained, as shown in Fig.7.Fig.7 vertical force curves in different offest Fig.7 indicates that: When the eccentricity was positive, the vertical force on point C increased gradually in 0.2s0.3s with the increase of crank oddest: When the eccentricity was negative, the force decreased gradually first and then begun to increase along with -80mm. So when the offest was -80mm, the numerical of the force in 0.2s0.3s achieved the minimum and the quality of cutting was the best.When the crank rotated in the other speed, there were the same optimization results. Fig.8 show the curve of vertical force in the offest of 0mm and -80mm when the speed of crank was 80r/min. From the Fig.8 it is obvious that vertical direction of the force of point C in 0.2s0.3s reduced a lot when the eccentricity is -80mm. Therefore, the vertical force could be reduced by optimizing the slider-crank mechanism of eccentricity.Fig.8 Vertical force of C5 Experimental AnalysisThe relative error of thickness of lotus root piece reflects the quality of cutting. Which is generally controlled of 10%. There always existed bevel edge phenomenon and the relative error of thickness was about 15% before structural optimization and improvement, which was difficult to meet the technical requirements. The offset in the slider-crank mechanism was optimized, and its structure was improved according to the results of optimization. After improvement cutting test were done in the conditions of crank speed for 80110r/min and statistical data about the relative error of thickness was shown in Table.1. Four levels were separated in the experiment, three times for each level.Table 1 Relative error of thickness of slicingNOCrank speed (r/min)809010011016.6%6.4% 8.2%9.5%25.3%6.1%8.5%9.2%26.4%7.9%7.9%9.4%Average6.1%6.8%8.2%9.4% It is derived from Table.1 that the relative error of the thickness of slices could meet the technical indicators when the crank speed was 80110r/min, especially in the crank rotation speed 80r/min, 90r/min the relative error of thickness was less than 7%,and high quality was achieved.6 ConclusionThe vertical force component acted on the knife in the process of cutting was the main reason for surface formation and bevel edge, so the key of improving the quality was to reduce the vertical force. Through slice knife and velocity acceleration simulation analysis the best time for slicing, 0.2s0.3s, was obtained. By optimizing the offset of the crank the vertical force during cutting time was greatly reduced when the offset was -80mm. Experiments were made after improving the design of lotus root slicer, which results showed that by changing the offset of the crank, the relative error of the thickness could fully meet the requirements of less than 10%. So the problem was basically solved that the flatness was not ideal and was the issue of bevel edge.1References 1 Wei,B . jianping,H.: Study of lotus root slicing techniques and design of new model,Journal of agricultural mechanization research (12),112-114(2006)(in Chinese)2 Enzhu, w.:the simulation and optimization on the new slicing machine of lotus root based on virtual prototype technology .jiangsu university 2008)in Chinese)3 Ce ,Z .:mechanical dynamics .higher education press1999)4Xiuning ,C.:optimal design of machinery .zhejiang university press1999)5Liping,C.,yunqing,Z.,weiqun,R.: dynamic analysis of mechanical systems and application Guide ADAMS . Tsinghua university press ,Beijing(2005)Page 8 of 8南華大學(xué)機(jī)械工程學(xué)院畢業(yè)設(shè)計(論文)蓮藕切片機(jī)切片平滑度的研究和改進(jìn)楊德勇 胡建平 韋恩鑄 雷恒群 孔祥次農(nóng)業(yè)設(shè)備和現(xiàn)代技術(shù)的國家重點實驗室江蘇省教育部 江蘇大學(xué).江蘇.鎮(zhèn)江中國 江蘇省 212013電話 +86-511-8:傳真+86-511-8yangdy163.com金湖農(nóng)業(yè)機(jī)械化技術(shù)推廣站中國 江蘇省 211600摘要:針對蓮藕切削質(zhì)量不高和蓮藕片的斜邊問題,通過分析原因,改進(jìn)的方法就是減少刀在垂直方向的力。在Pro/E的環(huán)境下創(chuàng)建了蓮藕切片機(jī)的3D零件和裝配體?;谔摂M樣機(jī)技術(shù),切片機(jī)的運(yùn)動學(xué)和動力學(xué)分析是在ADAMS軟件模擬實驗下實現(xiàn)的,獲得最佳的切削時間為0.2s0.3s,并且得到了刀在垂直方向上的力的曲線。刀在垂直方向上的力隨著曲柄偏移量的變化而改變。曲柄的偏移量優(yōu)化結(jié)果表明,當(dāng)曲柄的偏移量為-80mm時,在切削時間里的垂直方向上的力幾乎為零。測試結(jié)果表明,經(jīng)過改進(jìn)設(shè)計后,切片厚度的相對誤差小于10,這是能夠完全滿足技術(shù)要求的。關(guān)鍵詞:蓮藕;切削機(jī)制;平滑度;優(yōu)化1前言 中國是一個生產(chǎn)蓮藕的大國,蓮藕半成品系列食品的國內(nèi)消費(fèi)和外部的出口需求量比較大,為了提高工作效率,減輕勞動強(qiáng)度,設(shè)計工作組,在借鑒人工切蓮藕片原理的基礎(chǔ)上設(shè)計和開發(fā)一個新型的切片機(jī)(畢偉,胡建平,2006年)。這種新型的切片機(jī)容易解決切片易斷,粘刀,難清理等問題,但過程中還是出現(xiàn)不平滑切削和一些斜邊的現(xiàn)象。本文通過對切削時刀片的分析,發(fā)現(xiàn)了一些造成斜邊現(xiàn)象的原因,并提出了相應(yīng)的改進(jìn)方法,并通過實驗得到了驗證。2 切片機(jī)切削結(jié)構(gòu)原理蓮藕切片的切削原理是機(jī)器的核心,性能直接影響切片的質(zhì)量。在使用PRO / E平臺下建立了蓮藕切削原理的虛擬樣機(jī)(圖1),結(jié)構(gòu)本身的原理圖如圖2所示。蓮藕切片機(jī)的切削原理是通過核心的曲柄滑塊機(jī)構(gòu)往里面添加材料,它可以堆疊許多蓮藕,蓮藕依靠自己本身上部和下部的蓮藕,以便它能夠到達(dá)擋板的表面。曲柄滑塊機(jī)構(gòu)是由電機(jī)驅(qū)動,在滑塊上安裝刀片切蓮藕。但在切削過程中,發(fā)現(xiàn)在一塊蓮藕兩端面的平行度是不足夠的,這不能滿足加工的技術(shù)要求。圖1 蓮藕切削原理的虛擬樣機(jī)圖2 切片原理結(jié)構(gòu)圖切片機(jī)的蓮藕片平滑度的研究和提高。3 斜邊的原因厚薄不均勻和斜邊問題與刀片在切削過程中的力量有關(guān)。按照結(jié)構(gòu)原理(圖2),不考慮相互間摩擦和重量的因素,C點的力F的方向是沿鏈接方向。力F可以分解為一個水平方向的分力和一個垂直方向的分力。水平分力造成的刀沿垂直方向移動切削,但垂直方向上的力造成的刀沿垂直方向移動。由于滑塊和導(dǎo)軌之間的差距,垂直分力會使葉片在運(yùn)動時變形,刀不能沿水平方向切蓮藕,導(dǎo)致出現(xiàn)斜邊。因此,解決斜邊的問題和提高切削質(zhì)量的關(guān)鍵是減少或消除切片時的垂直分力。 當(dāng)曲軸轉(zhuǎn)速為6090轉(zhuǎn)/分鐘,C點和刀片連接部位的水平和垂直方向的力曲線如圖3和圖4所示。從圖上可以看出,當(dāng)曲柄的速度提高后,C點水平和垂直方向的力也增加了,相對穩(wěn)定的水平力有利于切削蓮藕期間,但垂直方向上的力也逐漸增加。越多的垂直方向上的力,越不利于切削的質(zhì)量。圖3 C點的水平力圖4 C點的垂直方向上的力4 仿真和優(yōu)化如果提高切片的平整度,結(jié)構(gòu)優(yōu)化可以減少垂直分力,所以盡可能的要刀片保持水平。當(dāng)曲柄速度6090轉(zhuǎn)/分鐘時,刀質(zhì)量中心的速度曲線和加速度曲線分別如圖5和圖6所示。根據(jù)速度曲線,在0.2s0.3s時間里,刀質(zhì)量中心的速度是比較大的。按照刀應(yīng)該有更高的速度來切削蓮藕的要求,這期間的時間切削比其他時間更有利。根據(jù)加速度曲線,一個周期計算,在0.15s0.3s的時間里,相比其他的時間段加速度值是相對比較小。這表明速度的變化相對較小,同時慣性產(chǎn)生的力小,切片機(jī)受力引起的振動影響小。因此,在0.2s0.3s里來切蓮藕有利于提高蓮藕片的切削質(zhì)量。圖5 刀片的質(zhì)量中心速度曲線圖6 刀片的質(zhì)量中心加速度曲線 基于上述分析,刀片和鏈接之間的垂直分力是造成斜邊的主要原因。根據(jù)曲柄滑塊機(jī)構(gòu)的特點,在切削時間段通過改變曲柄偏移來減少對刀垂直方向上的力,從而提高切削質(zhì)量。當(dāng)曲軸轉(zhuǎn)速為60轉(zhuǎn)/分鐘,曲軸偏心率得到了優(yōu)化。當(dāng)曲柄偏移量分別為40mm,20mm,0mm,-20mm, -40mm, -80mm, -120mm時,在不同的偏移量下模擬其原理,獲得了垂直方向上的力曲線,如圖7所示。圖7 不同偏移下的垂直方向上的力曲線圖7表明:偏心率為正值時,在0.2s0.3s隨著曲柄偏移量增加,C點的垂直方向上的力逐漸增加;當(dāng)偏心率為負(fù)值時,隨著曲柄偏移量的增加,力開始下降,然后在-80mm處開始逐步增加。所以,當(dāng)偏移量為-80mm,力在0.2s0.3s的數(shù)值降到最低,這時切削質(zhì)量是最佳的。 當(dāng)曲柄在其他的速度旋轉(zhuǎn),有相同的優(yōu)化結(jié)果。圖8顯示的是曲軸轉(zhuǎn)速為80轉(zhuǎn)/分鐘、曲軸偏移量為0mm到-80mm時,垂直方向上的力。從圖8可以看出,當(dāng)偏移量為-80mm時,C點垂直方向的里在0.2s0.3s大大減少。因此通過優(yōu)化曲柄偏移量可以減少垂直方向上的力。圖8 C點的垂直方向上的力5 實驗分析蓮藕片的厚度相對誤差反映了切削質(zhì)量,一般控制在10。在結(jié)構(gòu)的優(yōu)化和改進(jìn)前,總是存在斜邊現(xiàn)象,厚度相對誤差約為15%左右,這是難以滿足的技術(shù)要求。對曲柄滑塊機(jī)構(gòu)的偏移量進(jìn)行優(yōu)化,并根據(jù)優(yōu)化的結(jié)果,它的結(jié)構(gòu)有了一些改進(jìn)。改進(jìn)后的曲柄,在速度的條件為80110轉(zhuǎn)/分鐘時,切削試驗出來的厚度相對誤差的統(tǒng)計數(shù)據(jù)如表1所示。從四個速度層次進(jìn)行分析實驗,每個速度層次進(jìn)行三次實驗。表 1 切片厚度相對誤差 序號曲柄速度(轉(zhuǎn)/分鐘)809010011016.6%6.4% 8.2%9.5%25.3%6.1%8.5%9.2%26.4%7.9%7.9%9.4%平均6.1%6.8%8.2%9.4%來自表1的數(shù)據(jù)顯示,當(dāng)曲柄速度為80110轉(zhuǎn)/分鐘時,切片厚度相對誤差能滿足各項技術(shù)指標(biāo),尤其是當(dāng)曲軸旋轉(zhuǎn)速度為80轉(zhuǎn)/分鐘和90轉(zhuǎn)/分鐘時,厚度相對誤差低于7,達(dá)到了較高的切削質(zhì)量。6 總結(jié) 切削的過程中,表面不平整和斜邊的主要原因是作用在刀組件上的垂直分力,因此提高質(zhì)量的關(guān)鍵是減小垂直方向上的力。通過刀片質(zhì)量中心速度和加速度模擬分析曲線得到,0.2s0.3s是切片的最佳時間。通過優(yōu)化曲柄的偏移量,當(dāng)偏移量為-80mm時,垂直方向上的力在切削時間大大減小。經(jīng)過實驗改進(jìn)蓮藕切片機(jī)后,實驗結(jié)果表明,通過改變曲柄偏移量,厚度相對誤差不到10,完全能夠滿足要求。因此,平整度不理想和斜邊問題基本解決。參考文獻(xiàn)1 胡建平.蓮藕切片技術(shù)的學(xué)習(xí)和新的模型設(shè)計. 中國農(nóng)業(yè)機(jī)械化研究(12),112114.20062 韋恩鑄.基于虛擬樣機(jī)技術(shù)的新型蓮藕切片機(jī)仿真優(yōu)化.江蘇大學(xué),20083 張 策.機(jī)械動力學(xué).高等教育出版社,19994 陳秀林.機(jī)械優(yōu)化設(shè)計.浙江大學(xué)出版社,1999.5 陳麗萍,鄭云群,容微群.機(jī)械系統(tǒng)的動態(tài)分析和應(yīng)用指南ADAMS.北京:清華大學(xué)出版 社,2005第 7 頁 共 7 頁塔里木大學(xué) 畢業(yè)論文(設(shè)計)任務(wù)書學(xué)院機(jī)械電氣化工程學(xué)院班級機(jī)械設(shè)計12學(xué)生姓名 陳斌學(xué)號6031208107課題名稱蘋果切片機(jī)的設(shè)計起止時間2011年 12月 1日2012年5月 26日(共16周)指導(dǎo)教師王 偉職稱副教授課題內(nèi)容 設(shè)計棗樹起苗機(jī),主要能完成蘋果夾緊、切片等功能。1. 選擇動力形式,設(shè)計傳動裝置和工作裝置。2. 繪制二維裝配圖和零件圖。3. 對整機(jī)進(jìn)行三維實體建模。擬定工作進(jìn)度(以周為單位)第1-3周 查閱相關(guān)文獻(xiàn),撰寫開題報告。第4-6周 根據(jù)當(dāng)?shù)貙嶋H情況確定蘋果切片機(jī)的設(shè)計方案。第7-9周 根據(jù)工作要求,計算并查閱相關(guān)手冊,選擇和設(shè)計各零部件。第10周 運(yùn)用AutoCAD軟件,繪制二維零件圖和裝配圖。第11-12周 運(yùn)用三維設(shè)計軟件完成整機(jī)各零部件的三維建模。第13-14周 從工藝性能,經(jīng)濟(jì)性能,實用性能等方面對產(chǎn)品進(jìn)行綜合評價、校核、修正。第15周 完成設(shè)計說明書。第 16周 答辯。主要參考文獻(xiàn) 1 黃桂琴, 瞿越, 朱鳳武. 人參切片機(jī)設(shè)計研究J. 吉林農(nóng)業(yè)大學(xué)學(xué)報, 1996, (03) 2 戈振揚(yáng), 余揚(yáng). 脫水蜜菠蘿切片方法的研究J. 云南農(nóng)業(yè)大學(xué)學(xué)報, 1990, (04) 3 謝中生.國外切片機(jī)發(fā)展述評.電子工業(yè)部第45研究所.1996.3 4 屠用利. 罐藏果蔬原料處理設(shè)備(三)J. 食品工業(yè), 1985, (02) 5 戈振揚(yáng). 菠蘿切片機(jī)J. 食品與機(jī)械, 1990, (04) 6 朱海強(qiáng). QP320型鮮姜切片機(jī)的研制J. 農(nóng)機(jī)化, 2009, (03) 7 姜雪鷹,馮小氟. 計算機(jī)控制螺旋切片機(jī)的設(shè)計J. 機(jī)械設(shè)計與制造, 1995, (04) 8 李仕坦. 鮮菇切片機(jī)聞世J. 食用菌, 2003, (02) 9 手電動兩用蔬菜切絲切片機(jī)J. 農(nóng)村新技術(shù), 2010, (20) 10 毛瑞馥,陳正學(xué). CP系列果蔬脆片加工設(shè)備簡介J. 食品工業(yè)科技, 1996, (04) 11 羅倉學(xué), 楊秀芳, 劉萍. 凍干果蔬脆片制作工藝J. 應(yīng)用科技, 1998, (10) 12 罐頭工業(yè)手冊(專業(yè)沒備與建廠設(shè)計) 1980 5第五分冊北京:中國輕工業(yè)出版社,1986 13 朱海強(qiáng).QP320型鮮姜切片機(jī)研制J. 特色農(nóng)業(yè)化,2009,(3) 14 梁仁和.QP內(nèi)圓切片機(jī)系統(tǒng)設(shè)計和實現(xiàn).碩士學(xué)位論文,20071001 15 張瑋琪切片機(jī)電氣故障的檢修與維護(hù)電子工業(yè)專用設(shè)備2004(8):69-71 16 羅懷民微型PLc在切片機(jī)中的應(yīng)用電子工業(yè)專用設(shè)備2005(126):61-63 17 王明權(quán),郭強(qiáng)生,黃克飛QP-509型自動內(nèi)圓切片機(jī)電子工業(yè)專用設(shè)備1994,23(3) 任務(wù)下達(dá)人(簽字)同意按此計劃進(jìn)行設(shè)計 年 月 日任務(wù)接受人意見任務(wù)接受人簽名 年 月 日2012年6月 蘋果切片機(jī)的設(shè)計陳斌 王偉(塔里木大學(xué)機(jī)械電氣化工程學(xué)院, 阿拉爾 843300)摘 要:蘋果的營養(yǎng)很豐富,它含有多種維生素和酸類物質(zhì),針對蘋果在的種植廣,產(chǎn)量大,設(shè)計了對于蘋果深加工的蘋果切片機(jī)。設(shè)計的旋切式蘋果切片機(jī),主要是由電動機(jī)經(jīng)V帶降速并傳遞給平帶動力,從而使平帶進(jìn)行旋轉(zhuǎn)運(yùn)動,使刀片對蘋果進(jìn)行旋切。由齒條和彈簧的的配合使得刀片在切完一箱蘋果后,立即更換物料箱,并且壓緊物料進(jìn)行切割,其特點是效率較高。關(guān)鍵詞:蘋果;切片機(jī);刀片;旋切式中圖分類號: 文獻(xiàn)標(biāo)識碼:A 文章編號:- 5 -0 引言 蘋果的營養(yǎng)很豐富,它含有多種維生素和酸類物質(zhì)。1個蘋果中含有類黃酮約30毫克以上,蘋果中含有15%的碳水化合物及果膠,維生素A、C、E及鉀和抗氧化劑等含量也很豐富。1個蘋果(154g)膳食纖維5g,鉀170mg,鈣10mg,碳水化合物22g,磷10mg,Vc7.8g,Vb7.8g。蘋果中的含鈣量比一般水果豐富多,有助于代謝掉體內(nèi)多余鹽分。蘋果酸可代謝熱量,防止下半身肥胖。至于可溶性纖維果膠,可解決便秘。果膠還能促進(jìn)胃腸道中的鉛、汞、錳的排放,調(diào)節(jié)機(jī)體血糖水平,預(yù)防血糖的驟升驟降。 如今,的林果總面積已經(jīng)突破1700萬畝,果品產(chǎn)量達(dá)600萬噸,蘋果更是占了很大的份量。但是,由于現(xiàn)在的蘋果銷售方式很大程度上還是以鮮果的方式銷售到各地,就導(dǎo)致很多時候蘋果沒能得到很好的儲存條件,而導(dǎo)致大量的蘋果腐爛,造成很大的經(jīng)濟(jì)損失,這對蘋果產(chǎn)業(yè)的發(fā)展是及其不利的,所以,從國際和內(nèi)地的蘋果產(chǎn)業(yè)發(fā)展態(tài)勢看,蘋果的加工深加工具有很廣闊的發(fā)展前景,大力發(fā)展蘋果深加工與綜合利用技術(shù)研究,深加工不僅僅延長了蘋果的儲存和銷售期,而且可以大大增加了產(chǎn)品的附加值,更主要的是豐富了食品的品種,能更好地滿足不同消費(fèi)者的多元化的食品需求。蘋果深加工調(diào)整了產(chǎn)業(yè)結(jié)構(gòu)、緩解了供需矛盾、節(jié)約了生產(chǎn)浪費(fèi)、促進(jìn)了人類飲食文明的進(jìn)步??梢哉f深加工所占比例反映了一個國家或地區(qū)蘋果產(chǎn)業(yè)的成熟程度。大力發(fā)展?jié)饪s鮮果汁、飲料、果醬等蘋果加工技術(shù),有助于提高蘋果的國際競爭力。 在蘋果深加工過程中,蘋果切片就是其中的一個關(guān)鍵的環(huán)節(jié),只有將蘋果片切到合適的厚度,才能在后面得加工過程中很好的提取出蘋果的營養(yǎng)成分,而且直接將蘋果切片進(jìn)行儲存也能很好的留住蘋果的營養(yǎng)成分。在大批量生產(chǎn)蘋果切片的過程中,能保證切片質(zhì)量和效率的切片機(jī)就顯得至關(guān)重要了。 因此本人對以前的切片機(jī)進(jìn)行參考,進(jìn)行改進(jìn),將其刀片改為旋切式的,提高機(jī)構(gòu)的切片效率設(shè)計出此作品。1 設(shè)計原理及機(jī)構(gòu)1.1 整體設(shè)計思路本人設(shè)計的旋切式蘋果切片機(jī),主要是由電動機(jī)經(jīng)V帶降速并傳遞給平帶動力,從而使平帶進(jìn)行旋轉(zhuǎn)運(yùn)動,使刀片對蘋果進(jìn)行旋切。由齒條和彈簧的的配合使得刀片在切完一箱蘋果后,立即更換物料箱,并且壓緊物料進(jìn)行切割。通過平帶的傳動與切割,完成切片過程;同時使用齒條和彈簧使得壓緊元件能夠很好的壓緊,在即將切完時迅速的退出并且更換物料箱;至于刀片,將其用鉚釘釘入平帶中,物料箱固定在機(jī)架上的導(dǎo)軌上,隨著平帶的旋轉(zhuǎn)運(yùn)動,刀片也跟著運(yùn)動,同時,在平帶上安裝了8把刀片,設(shè)定的切削速度為1m/s,切削厚度為3mm,在保證了切片質(zhì)量的同時,切削效率也是比較好的。小平帶輪1通過它的軸與V帶軸連接,為主動輪;機(jī)架2通過它支撐與連接機(jī)架平臺,起到固定的作用; 機(jī)架平臺3用來支撐物料箱上的導(dǎo)軌;平帶4在上面安裝刀片,切片的同時也支撐物料;定位元件5用電機(jī)控制它的運(yùn)動情況,在切片的時候固定物料箱;壓緊輪6用來壓緊平帶,保證平帶的強(qiáng)度;刀片7用鉚釘鉚在平帶上,切片的元件;壓緊機(jī)構(gòu)8它與電機(jī)配合,用來壓緊物料;物料箱9用來盛放物料的裝置;導(dǎo)軌10設(shè)計在物料箱的兩側(cè),正好架在機(jī)架平臺上;支撐板11支撐平帶;大帶輪12機(jī)構(gòu)的從動部件;擋料板13用來防止料亂飛;接料板14接住出料。1-小平帶輪 2-機(jī)架 3-機(jī)架平臺 4-平帶 5-定位元件 6-刀片7-壓緊機(jī)構(gòu) 8-壓緊板 9-導(dǎo)軌 10-物料箱 11-支撐板 12-大平帶輪 13-擋料板 14-接料板圖1-1 切片機(jī)示意圖2 關(guān)鍵部件設(shè)計2.1 平帶設(shè)計 首先平帶的材料選取為膠帆布平帶,這是由于帶輪的工作環(huán)境比較干燥,工作量比較小。至于帶輪,選取為普通的滾筒,由于其所要承受的載荷不是很大,因此滾筒的結(jié)構(gòu)形式為輪輻式。平帶及帶輪的機(jī)構(gòu)示意圖圖2-1 平帶及帶輪的示意圖2.2 平帶上刀片的設(shè)計 因為根據(jù)設(shè)計要求,刀片既要一邊支撐物料,又要一邊切削。所以我將它與平帶設(shè)計在一起,隨著平帶的運(yùn)動而運(yùn)動。 同時考慮到箱子不能跟平帶一起運(yùn)動,必須另外有裝置固定它,所以,我設(shè)計支架通過它支撐箱子,又為了避免妨礙刀片運(yùn)動,就將刀片寬度設(shè)定為箱子寬度。考慮到平帶是圓周運(yùn)動,因此我設(shè)計在每隔一定的距離安裝一把刀片,有效的利用圓周運(yùn)動,大大的提高工作效率。由平帶的轉(zhuǎn)速、帶長和物料箱的長度決定每隔500mm安裝一把刀片,這樣在整個平帶上就有8把刀片,即在平帶運(yùn)動一周的時間內(nèi),刀片切削8次。刀片的尺寸為寬300mm,長10mm,高3mm。,用鉚釘將刀片鉚上去。鉚釘?shù)拇笮∵x?。翰捎贸令^的型式, 。同時,為防止平帶的強(qiáng)度由于有溝槽而降低,在平帶上裝有刀片的地方也鉚上薄鐵皮,能有效的減少因開有溝槽而造成的強(qiáng)度降低。1-刀片 2-溝槽 3-平帶 4-鉚釘 5-鐵片圖2-2 刀片示意圖2.3 帶輪軸的設(shè)計 選擇軸的材料并確定許用應(yīng)力:選用45號鋼正火處理,查得強(qiáng)度極限,得其許用彎曲確定軸的直徑:按扭轉(zhuǎn)強(qiáng)度估算,取C=110, 考慮到軸上有鍵槽,將軸的直徑增大5%,則 這里d取30mm。軸的基本數(shù)據(jù)如下 此兩段軸主要是用于安裝軸承,主要按軸承內(nèi)徑尺寸系列確定,初選軸承類型為深溝球軸承,型號為6306,內(nèi)徑為30mm,外徑為72mm,寬度為19mm。 此段軸主要考慮軸上的鍵槽,查表取其數(shù)值為 軸的示意圖如下:圖2-3 軸的示意圖2.4 小V帶輪的設(shè)計 輪類零件(齒輪、帶輪、鏈輪及蝸輪等)的功能是在軸與軸之間傳遞動力和運(yùn)動。V帶輪的材料的選擇主要用鑄鐵HT150或HT200,本機(jī)構(gòu)選用HT200,小V帶輪的直徑較小,在這里采用實心式。 輪槽的契角 ,節(jié)寬 ,槽間距 ,基準(zhǔn)線上槽深 ,最小槽緣厚度 ,外徑 =105.5其結(jié)構(gòu)示意圖如下: 圖2-4 V帶小輪2.5 大V帶輪的設(shè)計 V帶輪的材料的選擇主要用鑄鐵HT150或HT200,本機(jī)構(gòu)選用HT200,大V帶輪的直徑大于300mm時,其帶輪結(jié)構(gòu)采用輪輻式,帶寬: 查表得A帶: f=9 輪槽的契角 ,節(jié)寬,槽間距,基準(zhǔn)線上槽深 ,最小槽緣厚度 ,外徑 =320.5。其結(jié)構(gòu)示意圖如下:圖2-5 V帶大輪示意圖2.6 V帶的張緊 由于各種材質(zhì)的V帶都不是完全的彈性體,因而V帶在張緊里的作用下,經(jīng)過一定的時間運(yùn)轉(zhuǎn)后,就會由于塑性變形而松弛,是張緊力減小,傳遞動力的能力降低。因此,帶傳動必須設(shè)計張緊裝置,最常見的有定期張緊和自動張緊兩類。由于本人設(shè)計與選用的V帶的中心距不可調(diào),因此選用張緊輪裝置,張緊輪放在松邊的內(nèi)側(cè),是帶只手單向彎曲。同時,放置張緊輪時,使其盡量的靠近大帶輪,以免影響帶在小輪上的包角。張緊輪的輪槽與帶輪相同,且直徑小于小帶輪。張緊輪定期張緊裝置的示意圖如下1-小V帶輪 2-大V帶輪 3-V帶 4-張緊輪 5-張緊輪機(jī)架圖2-6 V帶張緊裝置的示意圖2.7 物料箱的選擇 根據(jù)設(shè)計的要求,物料箱兩旁裝有導(dǎo)軌,使得它能夠在有外力作用的時候能夠沿著導(dǎo)軌運(yùn)動。根據(jù)物料蘋果的型狀大小,設(shè)計得出它的長為150mm,它的寬度為300mm,主要是因為設(shè)計與選用的平帶的帶寬為355mm;由于蘋果的平均直徑為70mm,物料箱中一般放有8個蘋果,物料箱的高度為100mm。2.8 壓緊機(jī)構(gòu)的設(shè)計 為了使壓緊機(jī)構(gòu)與刀片的密切配合,在切片的行程里緩慢的壓緊蘋果,并隨時調(diào)整距離,在即將切完時,能夠迅速的松開,以配合供給機(jī)構(gòu)的送料,當(dāng)更換完物料箱之后,又進(jìn)入壓緊過程,使切片順利。為此,我選擇用電機(jī)和齒條的配合來壓緊, 由平帶的速度1m/s和平帶上的刀片數(shù)8把,得出壓緊機(jī)構(gòu)以每秒6mm的速度向下運(yùn)動,當(dāng)壓緊機(jī)構(gòu)向下運(yùn)動了120mm時,此時,松開手動搖柄,這時機(jī)構(gòu)依靠彈簧中的儲能向上彈,等另一物料箱到預(yù)定位置后,搖動搖柄,然后又一輪的壓緊行程開始。壓緊機(jī)構(gòu)的機(jī)構(gòu)示意圖如下所示1-壓料元件 2-螺栓 3-擋板 4-彈簧 5-保護(hù)桿 6-壓緊連桿 7-齒條圖2-7 壓緊機(jī)構(gòu)示意圖壓料元件1用彈性較大的材料制成,其底部粘貼一層橡皮,使得它在壓緊的過程中始終能緊密的貼著物料;螺栓2將壓料元件1和桿6連接起來;擋板3用螺栓將它固定在基架上;彈簧4連接壓緊連桿6和擋板3,在壓緊連桿6向下運(yùn)動,當(dāng)碰到擋板3的時候,它開始儲能,最后利用彈簧的彈力使壓緊機(jī)構(gòu)退出物料箱;保護(hù)桿5它卡在機(jī)架中的槽中,使得壓緊機(jī)構(gòu)不能做水平方向上的運(yùn)動,只能上下運(yùn)動;壓緊連桿6用于連接和傳遞動力;齒條7在連桿上加工出來的齒條,通過它與電機(jī)的配合運(yùn)動來傳遞動力。3 結(jié)論 (1)此切片機(jī)的效率是人工的56倍,能達(dá)到2530個/分。 ( 2)由于是用帶傳動進(jìn)行旋切,所以對帶的壽命影響比較大,帶的磨損比較快。4 參考文獻(xiàn)1 徐灝.機(jī)械設(shè)計手冊第3卷.北京:機(jī)械工業(yè)出版社,1992年 21-2352 戈振揚(yáng), 余揚(yáng). 脫水蜜菠蘿切片方法的研究J. 云南農(nóng)業(yè)大學(xué)學(xué)報, 1990, (04)3 謝中生.國外切片機(jī)發(fā)展述評.電子工業(yè)部第45研究所.1996.34 屠用利. 罐藏果蔬原料處理設(shè)備(三)J. 食品工業(yè), 1985, (02)5 方大千.電動機(jī)速查速算手冊M .中國水利水電出版社 ,2004年 99-1016 陳立周等機(jī)械設(shè)計(原書第二版) M .北京:機(jī)械工業(yè)出版社,2002年 68-707 姜雪鷹,馮小氟. 計算機(jī)控制螺旋切片機(jī)的設(shè)計J. 機(jī)械設(shè)計與制造, 1995, (04)8 李仕坦. 鮮菇切片機(jī)聞世J. 食用菌, 2003, (02)9 手電動兩用蔬菜切絲切片機(jī)J. 農(nóng)村新技術(shù), 2010, (20)10 王先逵機(jī)械制造工藝學(xué)M . 機(jī)械工業(yè)出版社,2006年 26-28Apple slice machine designChen Bin( Tarim University mechanical electrical engineering college, xinjiang in843300.)Abstract: Apple s nutrition is very rich, it contains a variety of vitamins and acids, on Apple plantations in Xinjiang wide, large output, designed for apple deep processing apple slicer. Design of the rotary cutting type , Apple slicer, primarily by motor through V belt speed down and transferred to the flat belt flat belt driving, thereby allowing a rotational motion, so that the blade on the apple peeling. By a rack and spring makes the blade of the cut ends with a box of apple, the immediate replacement of the material box, and compress the material cutting, which is characterized by high efficiency.Key words: Apple; slicer; blade; rotating cutting type
收藏