PLC控制直列式加工自動線設(shè)計(jì)【機(jī)電PLC】【19張CAD圖紙】
喜歡這套資料就充值下載吧。資源目錄里展示的都可在線預(yù)覽哦。下載后都有,請放心下載,文件全都包含在內(nèi),【有疑問咨詢QQ:414951605 或 1304139763】=喜歡這套資料就充值下載吧。資源目錄里展示的都可在線預(yù)覽哦。下載后都有,請放心下載,文件全都包含在內(nèi),【有疑問咨詢QQ:414951605 或 1304139763】=
電氣和測控系統(tǒng)設(shè)計(jì)目 錄目錄.1摘要.2一, 應(yīng)用系統(tǒng)總體方案設(shè)計(jì)2 PLC控制系統(tǒng)類型3系統(tǒng)的運(yùn)行方式.3二, 系統(tǒng)硬件設(shè)計(jì)根據(jù)工藝要求3設(shè)備狀況4控制功能4I/O點(diǎn)數(shù)和種類.5三.系統(tǒng)軟硬件設(shè)計(jì)文件.5 PLC型號的選擇5確定安排PLC的輸入輸出點(diǎn).11 工藝流程圖與動作順序表.14 PLC現(xiàn)場器件的安裝接線較長.15.各模塊程序設(shè)計(jì).15. 附錄:附加外文翻譯21鳴謝.27 參考資料.28【摘要】本文主要介紹以模擬生產(chǎn)實(shí)際的自動線為對象,利用電子、機(jī)械、檢測技術(shù)融為一體的PLC的控制技術(shù),實(shí)現(xiàn)PLC控制的多樣性和柔性化控制要求,其中包括PLC的選型,系統(tǒng)的運(yùn)行方式,步進(jìn)電動機(jī)的PLC控制,工業(yè)機(jī)械手的PLC控制【關(guān)鍵詞】 PLC、 步進(jìn)電動機(jī)、 工業(yè)機(jī)械手【Abstract】The main introduction of this text regards producing the real transfer machine in simulation as the target , utilize control technology of PLC that the electron, machinery, detection technique combine together, realize variety and flexibility that PLC controls control and require,Including the selecting type of PLC, systematic operation way, PLC which walks into the motor controls, PLC of the industry manipulator controls【Key words】PLC,walks into the motor, industry manipulator第一章 應(yīng)用系統(tǒng)總體方案設(shè)計(jì).1 PLC控制系統(tǒng)原理 .2 系統(tǒng)的運(yùn)行方式用PLC構(gòu)成的控制系統(tǒng)有三種運(yùn)行方式,即自動、半自動和手動。1.自動運(yùn)行方式。自動運(yùn)行方式是控制系統(tǒng)的主要運(yùn)行方式。這種運(yùn)行方式的主要特點(diǎn)是在系統(tǒng)工作過程中,系統(tǒng)按給定的程序自動完成被控對象的動作,不需要人工干預(yù)。系統(tǒng)的啟動可由本身的啟動系統(tǒng)進(jìn)行也可由發(fā)動啟動預(yù)告,由操作人員確認(rèn)并按下啟動響應(yīng)啟動響應(yīng)按鈕后,自動啟動系統(tǒng)。2.半自動運(yùn)行方式。這種運(yùn)行方式的特點(diǎn)是系統(tǒng)在啟動和運(yùn)行過程中的某些步驟需要人工干預(yù)才能進(jìn)行下去。半自動方式多用于檢測手段不完善,需要人工判斷或某些設(shè)備不具備自控條件需要人工干涉的場合。3.手動運(yùn)行方式。手動運(yùn)行方式不是控制系統(tǒng)的主要運(yùn)行方式,而是用于設(shè)備調(diào)試、系統(tǒng)調(diào)整和特殊情況下的運(yùn)行方式,因此它是自動運(yùn)行方式的輔助方式。與系統(tǒng)運(yùn)行的方式的設(shè)計(jì)相對應(yīng),第二章系統(tǒng)硬件設(shè)計(jì)根據(jù)工藝要求加工自動生產(chǎn)線的工藝要求是以機(jī)械加工自動線為對象,實(shí)現(xiàn)自動線的上料、輸送、夾緊加工、轉(zhuǎn)位、夾緊加工、松開、卸料多種動作的模擬加工自動線設(shè)計(jì)。采用小型壓縮機(jī)組(功率為.5,氣源壓力為0.40.8Mpa)為動力,用小型氣動元件、行程開關(guān)、接近開關(guān)、光電開關(guān)、可編程控制器()來實(shí)現(xiàn)動作要求。設(shè)備狀況自動線的上料采用氣缸的動作又由相應(yīng)的電磁閥來控制。自動線的輸送動作由步進(jìn)電動機(jī)帶動實(shí)現(xiàn)間隔輸送,實(shí)現(xiàn)設(shè)計(jì)要求的輸送狀況。從輸送帶到夾緊加工過程是利用簡單機(jī)械手()控制對象實(shí)現(xiàn)工件的加工,再利用機(jī)械手送回由步進(jìn)電機(jī)控制的傳送帶上,繼續(xù)下一個工位的操作。用簡單機(jī)械手()實(shí)現(xiàn)工件的轉(zhuǎn)位加工,用機(jī)械手()實(shí)現(xiàn)卸料的動手,至此完成整個生產(chǎn)線的動作過程。其中機(jī)械手()、機(jī)械手()、機(jī)械手()的全部動作都由氣缸驅(qū)動,其中上升、下降動作由上升下降氣缸完成;夾緊、放松動作由夾緊放松氣缸完成;右轉(zhuǎn)、左轉(zhuǎn)由右轉(zhuǎn)左轉(zhuǎn)氣缸完成。所有氣缸的動作又由相應(yīng)的電磁閥來控制。其中上升下降氣缸和左轉(zhuǎn)右轉(zhuǎn)氣缸分別由雙線圈兩位電磁閥控制。上升下降、左轉(zhuǎn)右轉(zhuǎn)分別上升下降電磁閥、左轉(zhuǎn)右轉(zhuǎn)電磁閥控制。機(jī)械手的放松夾緊氣缸由一個單線圈兩位置電磁閥控制,當(dāng)該線圈通電時,機(jī)械手夾緊,該線圈斷電時,機(jī)械手放松。為了使機(jī)械手在工作過程中實(shí)現(xiàn)自動或半自動運(yùn)行,選用限位行程開關(guān)(上升、下降、左轉(zhuǎn)、右轉(zhuǎn)位置控制)和光電開關(guān)(有工件檢測)給相應(yīng)電磁閥傳遞啟動信號??刂乒δ苡晒に囈蠛驮O(shè)備狀況設(shè)計(jì)系統(tǒng)的類型、規(guī)模、機(jī)型、模塊、軟件等內(nèi)容。生產(chǎn)線控制系統(tǒng)應(yīng)有如下功能要求:()自動操作。系統(tǒng)自動操作啟動,自動生產(chǎn)線按要求自動運(yùn)行。() 手動操作。就是用按鈕操作對機(jī)械手和其他動作的每一種運(yùn)動單獨(dú)進(jìn)行控制。() 復(fù)位操作。根據(jù)上述功能要求,控制系統(tǒng)需要設(shè)計(jì)成單級控制系統(tǒng),以實(shí)現(xiàn)對系統(tǒng)各驅(qū)動器件的控制。運(yùn)行方式需要選用自動運(yùn)行方式和手動運(yùn)行方式以實(shí)現(xiàn)不同情況的動作要求。I/O點(diǎn)數(shù)和種類根據(jù)工藝要求、設(shè)備狀況和控制功能,統(tǒng)計(jì)系統(tǒng)I/0點(diǎn)數(shù)。手一的輸入點(diǎn)數(shù):上下限位行程開關(guān),個;左右限位行程開關(guān),個;右下限位行程開關(guān)(裝料),個。輸出點(diǎn):五個電磁閥線圈。同理:機(jī)械手二有五個輸入點(diǎn),五個輸出點(diǎn)。機(jī)械手三有五個輸入點(diǎn)。五個輸出點(diǎn)1)推工件缸有一個行程開關(guān),一個接近傳感器,二個電磁閥線圈。 二個輸入,二個輸出。加各種光電開關(guān)和手動按鈕和轉(zhuǎn)換開關(guān),共有:個輸入點(diǎn),個輸出點(diǎn)。第三章系統(tǒng)軟硬件設(shè)計(jì)文件 根據(jù)I/0點(diǎn)數(shù)、能力和響應(yīng)速度選擇PLC型號:品牌:三菱型號:FX2N-80MR特性:超高速的運(yùn)算速度(0.08s/step),50%小型化設(shè)計(jì),程序容量:內(nèi)置8KSTEPRAM,最大可擴(kuò)充至16KSTEP,可使用FX系列模塊,可做8臺主機(jī)連線,,可以采用最小8點(diǎn)的擴(kuò)展模塊進(jìn)行擴(kuò)展. (FX2N-80MR結(jié)構(gòu))推缸返回接近傳感推工件缸步進(jìn)電機(jī)停一定脈沖時間到步進(jìn)電機(jī)轉(zhuǎn)T時間到原位原位原位機(jī)械手三卸料光電開關(guān)三機(jī)械手二上料加工光電開關(guān)二機(jī)械手一上料加工光電開關(guān)一空氣壓縮機(jī)啟動指示燈顯示正常開始 夾緊YA5JNDU 上升YA3 SQ1 SQ4右轉(zhuǎn)YA1松開下降YA4 SQ0 SQ3 左轉(zhuǎn)YA2 SQ5右下限位 (機(jī)械手結(jié)構(gòu)示意圖) 機(jī)械手通常位于原點(diǎn)。圖中 SQ1為下限位開關(guān),SQ1為上限位開關(guān),SQ3,SQ4分別為右限位和左限位開關(guān)。機(jī)械手的左右轉(zhuǎn)動和有工件的夾持與松開,均由電磁閥驅(qū)動氣缸來實(shí)現(xiàn)。電磁閥YA4控制機(jī)械手下降,YA5負(fù)責(zé)夾持及松開工件,YA3使機(jī)械手上升。YA1使機(jī)械手右轉(zhuǎn),YA2使機(jī)械手左轉(zhuǎn)。一上料加工時按下起動按鈕,各機(jī)械手動作如下框圖所示工作。YA4得電動作,機(jī)械手先由原點(diǎn)下降,碰到下限位開關(guān)SQ后YA4失電,停止下降;電磁閥YA5動作將工件夾持,為保證工件可靠夾緊,機(jī)械手在該位置等待1S時間;待夾緊后YA3得電動作使機(jī)械手開始上升,碰到上限位開關(guān)SQ2后YA3失電,停止上升;YA1得電,改向右轉(zhuǎn)動,轉(zhuǎn)到右限位開關(guān)SQ3位置時,YA1失電停止右轉(zhuǎn);YA4得電,改為下降,到碰到右下限位開關(guān)SQ5時,YA4失電,機(jī)械手將工件松開。放在夾具上。松開延時一秒后使YA3得電機(jī)械手上升,碰到上限位行程開關(guān)SQ2后YA3失電停止上升。這時夾具夾緊工件,數(shù)控機(jī)床進(jìn)行加工。機(jī)械手在上等待加工完成信號。當(dāng)加工完成,機(jī)械手YA4得電,機(jī)械手下降。碰到右下限位開關(guān)SQ5時,YA4失電,機(jī)械手將工件夾緊,為保證工件可靠夾緊,機(jī)械手在該位置等待1S時間;待夾緊后YA3得電動作使機(jī)械手開始上升,碰到上限位開關(guān)SQ2后YA3失電,停止上升。當(dāng)機(jī)床加工完夾具松開時,YA2得電,改向左轉(zhuǎn)動,轉(zhuǎn)到左限位開關(guān)SQ4位置時,YA2失電停止左轉(zhuǎn)。改為下降,到碰到下限位開關(guān)SQ1時,YA4失電,機(jī)械手將工件松開放在傳送帶上,送到下一個工位進(jìn)行加工。松開后一秒,機(jī)械手YA3得電上升碰到上限位行程開關(guān)SQ2停止(原位)。則機(jī)械手一完成一次過程。當(dāng)光電開關(guān)一有效時,又重復(fù)上述過程。 上述整個流程都是按順序進(jìn)行的,即完成了上一步,才能執(zhí)行下一步。 二 同理: 上料加工時起動按鈕有效時,各機(jī)械手動作如下框圖所示工作。YA9得電動作,機(jī)械手先由原點(diǎn)下降,碰到下限位開關(guān)SQ6后YA9失電,停止下降;電磁閥YA12動作將工件夾持,為保證工件可靠夾緊,機(jī)械手在該位置等待1S時間;待夾緊后YA10得電動作使機(jī)械手開始上升,碰到上限位開關(guān)SQ7后YA10失電,停止上升;YA8得電,改向左轉(zhuǎn)動,轉(zhuǎn)到左限位開關(guān)SQ3位置時,YA8失電停止左轉(zhuǎn);YA12得電,改為下降,到碰到左下限位開關(guān)SQ14時,YA12失電,機(jī)械手將工件松開。放在夾具上。松開延時一秒后使YA10得電機(jī)械手上升,碰到上限位行程開關(guān)SQ7后YA10失電停止上升。這時夾具夾緊工件,數(shù)控機(jī)床進(jìn)行加工。機(jī)械手在上等待加工完成信號。當(dāng)加工完成,機(jī)械手YA11得電,機(jī)械手下降。碰到左下限位開關(guān)SQ10時,YA9失電,機(jī)械手將工件夾緊,為保證工件可靠夾緊,機(jī)械手在該位置等待1S時間;待夾緊后YA10得電動作使機(jī)械手開始上升,碰到上限位開關(guān)SQ7后YA10失電,停止上升。當(dāng)機(jī)床加工完夾具松開時,YA8得電,改向右轉(zhuǎn)動,轉(zhuǎn)到右限位開關(guān)SQ9位置時,YA9失電停止左轉(zhuǎn)。改為下降,到碰到下限位開關(guān)SQ6時,YA12失電,機(jī)械手將工件松開放在傳送帶上,送到下一個工位進(jìn)行加工。松開后一秒,機(jī)械手YA10得電上升碰到上限位行程開關(guān)SQ7停止(原位)。則機(jī)械手一完成一次過程。當(dāng)光電開關(guān)一有效時,又重復(fù)上述過程。上述整個流程都是按順序進(jìn)行的,即完成了上一步,才能執(zhí)行下一步。 三同理:機(jī)械手三當(dāng)光電開關(guān)三有效時,機(jī)械手三開始工作。YA15得電開始從原位右轉(zhuǎn),轉(zhuǎn)到右下限位開關(guān)SQ15位置時,YA15失電停止右轉(zhuǎn)YA18得電動作,機(jī)械手下降,碰到下限位開關(guān)SQ12后YA18失電,停止下降;電磁閥YA19動作將工件夾持,為保證工件可靠夾緊,機(jī)械手在該位置等待1S時間;待夾緊后YA17得電動作使機(jī)械手開始上升,碰到上限位開關(guān)SQ12后YA17失電,停止上升;YA16得電,改向左轉(zhuǎn)動,轉(zhuǎn)到左限位開關(guān)SQ18位置時,YA16失電停止左轉(zhuǎn);YA3得電,改為下降,到碰到下限位開關(guān)SQ11時,YA17失電,機(jī)械手將工件松開。放在收料倉里。松開延時一秒后使YA17得電機(jī)械手上升,碰到上限位行程開關(guān)SQ12后,YA17失電,YA15得電,改向右轉(zhuǎn),碰到右限位開關(guān)SQ14機(jī)械手停在原位。完成卸料動作。動作過程圖:如下 上述整個流程都是按順序進(jìn)行的,即完成了上一步,才能執(zhí)行下一步。四當(dāng)機(jī)械手一動時開始有一個定時器,定時器設(shè)為生產(chǎn)線工作的某一個工位最長時間的。在這里可設(shè)為(1.5 2.5分鐘)調(diào)整定時器的時間可以調(diào)節(jié)生產(chǎn)節(jié)奏。當(dāng)機(jī)械手一、機(jī)械手二、機(jī)械手三、都回到原位時,定時時間到這時步進(jìn)電動機(jī)轉(zhuǎn)動,輸送工件,實(shí)現(xiàn)工件的間歇輸送。步進(jìn)電機(jī)的控制是利用PLC的軟件編程的方法產(chǎn)生一定頻率的脈沖。通過編程軟件改變脈沖的頻率來實(shí)現(xiàn)步進(jìn)電機(jī)的調(diào)速。 五 當(dāng)步進(jìn)電機(jī)輸送一定的步距,步進(jìn)電動機(jī)就停止轉(zhuǎn)動,這時,光電傳感開關(guān)一有效,機(jī)械手一動作,光電傳感開關(guān)二有效,機(jī)械手二動作。同時,推工件缸工作,使工件被推到傳送帶上。推工件缸的的控制是由氣缸雙線圈兩位電磁閥控制。推工件缸起動,YA20得電,工件被緩慢的推到傳送帶上,當(dāng)工件接近接近傳感器時,接近傳感器工作推件缸YA20失電,YA21得電返回,碰到行程開關(guān)SQ16。缸返回到原位停止。完成一次過程。當(dāng)步進(jìn)電機(jī)再一次停止時,又重復(fù)上述過程。:現(xiàn)場器件與PLC內(nèi)部等效繼電器地址編號的對照表。根據(jù)上表選定與各開關(guān)、電磁閥等現(xiàn)場器件相對應(yīng)的PLC內(nèi)部等效繼電器的地址編號,其對照表如下表所示。機(jī)械手一輸入機(jī)械手一說明現(xiàn)場器件內(nèi)部繼電器地址下限位開關(guān)SQ1X0上限位開關(guān)SQ2X1右限位開關(guān)SQ3X2左限位開關(guān)SQ4X3右下限位開關(guān)SQ5X4光電檢測開關(guān)1YJ1X5停止按鈕SB1X6返回原點(diǎn)按鈕SB2X7 機(jī)械手二輸入 機(jī)械手二說明現(xiàn)場器件內(nèi)部繼電器地址下限位開關(guān)SQ6X10上限位開關(guān)SQ7X11右限位開關(guān)SQ8X12左限位開關(guān)SQ9X13右下限位開關(guān)SQ10X14光電檢測開關(guān)二YJ2X15停止按鈕SB3X16返回原點(diǎn)按鈕SB4X17機(jī)械手三輸入機(jī)械手三說明現(xiàn)場器件內(nèi)部繼電器地址下限位開關(guān)SQ11X20上限位開關(guān)SQ12X21右限位開關(guān)SQ13X22左限位開關(guān)SQ14X23右下限位開關(guān)SQ15X24光電檢測開關(guān)三YJ3X25停止按鈕SB5X26返回原點(diǎn)按鈕SB6X27其他輸入:說明現(xiàn)場器件內(nèi)部繼電器地址步進(jìn)電機(jī)手動按鈕SB7X30步進(jìn)電機(jī)停止按鈕SB8X31手動上料(帶)SB9X32上料返回SB10X33一工位加工信號YJ4X34二工位加工信號YJ5X35接近傳感器YJ6X.36推件缸回程行程開關(guān)SQ16X37空氣壓縮機(jī)K1X40生產(chǎn)線總停按鈕SB11X40選擇自動開關(guān)K2X42連續(xù)返回原點(diǎn)按鈕K3X44輸出對照:說明現(xiàn)場器件內(nèi)部繼電器地址回轉(zhuǎn)缸右轉(zhuǎn)電磁閥YA1Y0回轉(zhuǎn)缸左轉(zhuǎn)電磁閥YA2Y1升降缸上升電磁閥YA3Y2升降缸下降電磁閥YA4Y3夾緊缸夾緊電磁閥YA5Y4機(jī)械手二回轉(zhuǎn)缸左轉(zhuǎn)電磁閥YA8Y10回轉(zhuǎn)缸右轉(zhuǎn)電磁閥YA9Y11升降缸上升電磁閥YA10Y12升降缸下降電磁閥YA11Y13夾緊缸夾緊電磁閥YA12Y14機(jī)械手三回轉(zhuǎn)缸右轉(zhuǎn)電磁閥YA15Y20回轉(zhuǎn)缸左轉(zhuǎn)電磁閥YA16Y21升降缸上升電磁閥YA17Y22升降缸下降電磁閥YA18Y23夾緊缸夾緊電磁閥YA19Y24其他輸出對照:說明現(xiàn)場器件內(nèi)部繼電器地址夾具一夾緊電磁閥YA6Y5夾具一松開電磁閥YA7Y6夾具二夾緊電磁閥YA13Y15夾緊二松開電磁閥YA14Y16手一原位指示燈HL1Y7 手二原位指示燈HL2Y17手三原位指示燈HL3Y25PLC初始化正常指示燈HL4Y26自動運(yùn)行指示燈HL5Y27步進(jìn)電機(jī)A相AY30步進(jìn)電機(jī)B相BY31步進(jìn)電機(jī)C相CY32步進(jìn)電機(jī)D相DY33空氣壓縮機(jī)起動KM1Y34帶上料電磁閥YA20Y35上料返回電磁閥YA21Y36 PLC與現(xiàn)場器件的實(shí)際安裝接線圖如圖 完整順序控制程序結(jié)構(gòu)安排根據(jù)操作方式的要求,可對完整順序操作控制程序結(jié)構(gòu)作如下安排,整個操作分為手動和自動順序兩類基本操作。() 手動順序操作1) 單一操作:用各按鈕開關(guān)來集資接通或斷開各負(fù)載的工作方式。2) 返回原位:按下返回原型位按鈕時,機(jī)械手一、二、三自動返回到它的原點(diǎn)位置,為順序控制由原位開始作好工作準(zhǔn)備。() 自動順序操作 機(jī)械手一、二、三處在原位時,按下起動按鈕,機(jī)器就連續(xù)周期重復(fù)進(jìn)行各步序工作。直到按下停止按鈕,機(jī)器執(zhí)行完最后一個工作周期返回原位,然后停機(jī)。 利用FX2N-80MR PLC中的條件跳轉(zhuǎn)指令可方便地對各種操作方式進(jìn)行選擇。下圖是對生產(chǎn)線完整的順序操作結(jié)構(gòu)的安排。工作時,首先執(zhí)行通用程序,包括步狀態(tài)初始化,狀態(tài)轉(zhuǎn)換起動、狀態(tài)轉(zhuǎn)換禁止、事故報(bào)警保護(hù)等程序。若選擇手動操作方式時,選擇返回原位方式,則常開觸點(diǎn)接通,按、,執(zhí)行原位程序;選擇X32手動上料(帶),選擇X33手動上料返回,選擇X30步進(jìn)電機(jī)手動控制.在不選擇該手動操作時,程序轉(zhuǎn)移到自動操作程序;自動程序要在起動按鈕下時才執(zhí)行。如果工藝要求在自動順序操作過程中停機(jī),重新起動后由原位開始工作,則可取消起動這步操作。整體結(jié)構(gòu)安排妥當(dāng)之后,進(jìn)一步深入,按模塊分別編制通用程序塊、手動順序程序塊、自動順序程序塊等各種操作方式的控制程序。各模塊程序設(shè)計(jì)() 自動連續(xù)操作程序自動連續(xù)操作程序是生產(chǎn)線控制中最重要的核心程序。對于生產(chǎn)過程過于復(fù)雜用繼電器符號程序很難實(shí)現(xiàn)或無法實(shí)現(xiàn)程序設(shè)計(jì)時,可采用步進(jìn)梯形指令來實(shí)現(xiàn)。通常是根據(jù)生產(chǎn)設(shè)備的工藝流程圖畫出其負(fù)載驅(qū)動圖,轉(zhuǎn)換條件圖,狀態(tài)轉(zhuǎn)換圖(或步進(jìn)梯開圖),最后到編寫指令程序表。) 負(fù)載驅(qū)動圖:負(fù)載驅(qū)動圖如圖所示,第一次下降工序中,下降電磁閥接通;在夾持工序中,夾持電磁閥置位,同時驅(qū)動定時器99以后執(zhí)行類似的操作完成由初始條件到下一個起動條件之間的一系列操作以下是狀態(tài)轉(zhuǎn)換條件圖:功率放大器步進(jìn)電動機(jī)PLC5步進(jìn)電機(jī)控制(控制框圖) 步進(jìn)電動機(jī)PLC傳動控制梯形圖程序(如圖)步進(jìn)電機(jī)的運(yùn)行控制:) 轉(zhuǎn)速控制。接通起動開關(guān)X30。脈沖控制器產(chǎn)生周期為0。1秒的脈沖,使移位寄存器移位產(chǎn)生八拍時序脈沖。通過四相八拍環(huán)行分配器使四個輸出繼電器Y30、Y31、Y32、Y33按照單雙八拍的通電方式接通,其接通順序?yàn)椋篩30Y30、Y31Y31Y31、Y32Y32Y32、Y33Y33Y33、Y30Y30其相應(yīng)于四相步進(jìn)電動機(jī)繞組的通電順序?yàn)椋篈A、BBB、CCC、DDD、AA調(diào)整T200的定時時間,步進(jìn)電機(jī)的接通順序不變,但間隔時間變化了。即脈沖的頻率改變了,這樣可以通過軟件的辦法改變T200的定時時間來改變步進(jìn)電機(jī)的轉(zhuǎn)速,實(shí)現(xiàn)步進(jìn)電機(jī)的可調(diào)。) 步數(shù)控制。改變步數(shù)控制C230的數(shù)值,將使步進(jìn)電動機(jī)的步距改變。即可實(shí)現(xiàn)工件的步距改變,有利于實(shí)現(xiàn)生產(chǎn)線布局的調(diào)節(jié)。) 總之,改變PLC的控制程序,可實(shí)現(xiàn)步進(jìn)電動機(jī)靈活多變的運(yùn)行方式,有利于實(shí)現(xiàn)設(shè)計(jì)的模塊化。 2)轉(zhuǎn)步條件圖。 在負(fù)載驅(qū)動圖上加上名步序的轉(zhuǎn)步條件,構(gòu)成轉(zhuǎn)步條件圖,如圖所示。當(dāng)按下自動起動按鈕,機(jī)械手一、二、三的起動有效時,機(jī)械手開始動作,。按步序完成所有動作,當(dāng)機(jī)械手一、二、三都又處于原位時完成一次工作過程,當(dāng)起動信號再一次有效時步序又轉(zhuǎn)換為第一次工作狀態(tài)。以后,用類似的方法完成一系列工藝過程的轉(zhuǎn)換。) 狀態(tài)轉(zhuǎn)換圖和步進(jìn)梯形圖。它由負(fù)載驅(qū)動圖和轉(zhuǎn)步條件圖組合而成。圖中每個工藝過程,都由標(biāo)有編號的狀態(tài)器代替,編號可在S500S800范圍內(nèi)選用。但不一定要連續(xù)排列。根據(jù)機(jī)械操作的工藝過程的狀態(tài)轉(zhuǎn)換圖,進(jìn)行編程,而不設(shè)計(jì)常規(guī)的繼電器順序。(3)方式選擇等通用程序1) 狀態(tài)的初始化。如圖所示。狀態(tài)初始化包括初始狀置位和中間狀態(tài)器復(fù)位。1. 初始狀態(tài)置位。在選擇返回原位方式下, 按返回原位按鈕,則表示機(jī)器初始化條件的初始狀態(tài)器S500、S530、S550置位,其作用是使自動順序工作從原位開始,依次逐步進(jìn)行轉(zhuǎn)換當(dāng)最后工序完成之后S500、S530、S550又分別置位。而在依次工作期間,即使誤按了起動按鈕,也不可能作另一次的起動,因?yàn)榇藭r工序已不在原位,S500、S530、S550已處于不工作狀態(tài)。 2中間狀態(tài)器復(fù)位。因?yàn)闋顟B(tài)器S500S800均由后備電源支持,在失電時有可能是接通的。為防止順序控制動作,通常需要在返回原位和手動操作時,對處于蹭狀態(tài)的狀態(tài)器進(jìn)行總復(fù)位。指令格式如圖。F670K103是總復(fù)位功能指令,包括F671的K編號到F672的K編號的所有器件。2) 狀態(tài)器轉(zhuǎn)換禁止 如圖。當(dāng)用步進(jìn)梯形指令控制狀態(tài)器轉(zhuǎn)換時,激勵特殊功能繼電器M574動作,則狀態(tài)器的自動轉(zhuǎn)換就被禁止。 當(dāng)按下自動按鈕時,M110產(chǎn)生脈沖輸出,使M574斷開,狀態(tài)器轉(zhuǎn)換禁止立即復(fù)位,進(jìn)行后工序處理。 1 對自動連續(xù)操作方式,狀態(tài)轉(zhuǎn)換禁止不受起動X42的影響,若按下停止按鈕時,M574得電自保持,操作停止在現(xiàn)行工序。按起動按鈕又可繼續(xù)下去。2 手動方式及PC起動時,都可使M574得電自保持,禁止?fàn)顟B(tài)轉(zhuǎn)換,直到按下起動按鈕。 生產(chǎn)線控制總程序按照圖完整順序控制結(jié)構(gòu)安排,將通用程序塊、手動程序塊、自動程序塊用FX2N-80MR PLC的跳轉(zhuǎn)條件程序有機(jī)地連接起來,即得到生產(chǎn)線步進(jìn)指令實(shí)現(xiàn)控制的總程序。附加外文翻譯 外文文獻(xiàn) I , robot controllerA sophisticated approach to kinematics is what differentiates robot controllers from more general purpose motion equipment.An interesting situation emerged recently when a manufacturer tried to put a vision system on an assembly line. The idea was to locate parts on a moving conveyor with a vision system ,then position a robotics arm to pick them up line at a time .Engineers there diligently worked out numerous displacement fudge factors to relate the locations of the conveyor end effectors and parts imaged by the camera . The fudge factors let the motion controller infer the physical location of a part from the vision system data , then direct the arm to the right place to pick it up.Problem was , the relative position of the various components all changed every time the conveyor went back on line after servicing or maintenance . The factors so carefully computed became useless .This necessitated regular rounds of recalculating new displacements.At the root of these difficulties were some fundamental misunderstandings about how general-purpose motion controllers differ from more specialized robot controllers. Hardwarewise, the two can look similar. Both frequently employ Pentium-based processors or adopt a hybrid approach with a general CPU supervising one or more digital signal processors dedicated to servo loops. However, the software architecture of a robot controller differs dramatically from that of an ordinary motion-controller software: It generally consists of a routine for closed-loop position or v velocity control ,operator interface functions , and routine for supervisory tasks.An important point to note is at the supervisory level of control . Tasks there that relate to handling motion do not extend much past simply issuing position commands and individual axes. In other word ,the supervisory level is relatively simply.The supervisory level of robot controller is more sophisticated. For one thing , it is written with the idea that ,post robotic systems incorporate feedback from high-level sensors that reside outside the position-encoder-feedback servo loops of individual axes. Typical examples include industrial vision system and force sensors.Most robotic work involves using information from these sensors to calculate the trajectory of a robot arm. To handle this calculation process, supervisory level software implements a trajectory planning algorithm. This algorithm relates the physical location of positioning elements, sensor feedback ,and the objects being positioned in terms of whats called a world coordinate system. This is in contrast to general-purpose motion equipment which tends to use a separate reference frame for each axis of motion .One benefit of a world-coordinate system is that it can eliminate the need for fudge factors relating sensor data to the position of various components. The state of the art is such that straightforward setup routines can compute suck information automatically. Moreover, data gathered during setup goes into transformation calculations that determine world coordinates and which are more precise than any manually deduced fudge factors. REFEENCE KINEMATICSIt is useful to briefly review the way a robot controller implements world coordinates. Readers will probably recall from engineering mechanics that the position of an arbitrary point expressed in one coordinate system can be mapped in another through use of a 4x4 transformation. In the case of Scasa robot arm , the position of a point at the end of the arm can be expressed in terms of the product of 4x4 matrices, one matrix for each link in the robot arm. Matrix coefficients for the arm itself are determined by link length and geometry, and joint angle. Obviously link geometry is known. Joint angle coefficients come from feedback provided by joint servo encoders.In an analogous manner, the coordinates inferred from the image of an industrial vision system can be expressed in world coordinates via another set of 4x4 transformations. The coefficients for the transformation matrices come from information determined during equipment setup .Take, as an example, the case of parts laying on a conveyor. The robot arm will locate three points on the conveyor as part of the setup process. These points , of course, define the conveyor plane . The robot controller uses this information to deduce the transformation coefficients that will relate conveyor position in world coordinates. A point to note is that even if the conveyor is on an angle this fact will be reflected in the transformation coefficients calculated automatically during setup. There is no need for computing additional displacements or other compensating offsets.Modern robot controllers use programming languages that also work in world coordinates. Tool commands, vision commands, and conveyor definitions all get expressed this way. Put another way, the world-coordinate system and the transformations that make it possible are embedded in the controller programming language. One additional manifestation of this approach is that when programming moves operators of suck systems need not concern themselves with timing relationships at the operating-system level.This is also one reason why robot controllers can implement a high-level calibration methodology. Once repositioned , a robot and its ancillary systems can find their bearings through use of a few software setup utilities that recalculate transformation coefficients.This process contrasts with that necessary for more general-purpose motion controllers. Though these systems also tend to employ special-purpose automation software , positioning commands tend to assume coordinate systems that center on each axis of motion . It is certainly possible to define world-coordinate system for these controllers. But control venders generally leave this task to OEMs handing applications where it specifically comes in handy.The reason is that robotic positioning is a special case of motion control . World coordinates offer limited utility in simpler but more typical positioning applications that can range from converting machines to card readers in ATMs.All in all , the process of fitting general-purpose controllers to robotic applications puts the burden on OEMs for coordinate transformation relationships already avail able in robot controllers. Alternatively they can simply try to make do with a series of loss robust physical offsets and displacements.TRAJECTORY PLANNINGThe servo loop software that positions an axis on a robot is fairly conventional. Each axis has its own servo loop . An error term drives axis motion, derived from the difference between position feedback and a position command. There may be feed forward constants to adjust the position error under certain conditions. And as with general-purpose motion controllers, robotic servo loops execute on the order of once every millisecond.The software that feeds position commands to each servo loop is called the trajectory planner. It is the trajectory planner that computes a model of where a tool tip must go from where it currently resides. To do so , it must take information out of world-coordinate form and translate it into joint angles (for a Scasa robot ) or into displacements for more general-purpose automation equipment. The trajectory planner repeats this process about every 16-mses. Trajectory and servo cycle time enters into not only system bandwidth concerns, but also safety considerations. The robotic industry has issued strict safety standards that dictate minimum levels of performance in emergency situations. Perhaps most obvious of these is the emergency stop. Robotic controllers employ an emergency stop algorithm that bypasses the trajectory planner and its 16-mses cycle time and executes controlled-stop routines in firmware . This powers down each axis to a controlled stop in a few milliseconds.This fast-but-controlled emergency stop can be contrasted with the technique used by many general-purpose motion controllers. The simpler approach is to just drive a large momentary surge of negative(halt)power to the amplifier. This certainly stops the positioning equipment. But in the case of a robot , it could easily snap off a wrist mechanism if there is enough inertia.Finally, robot controllers employ other safety , measures that are commonly found in NC equipment but which are rare in more general-purpose positions. For example, loss of encoder feedback will generate an emergency stop. Ditto for reaching end of travel limits. These limits may be set either by hardware limit switches, or by declaring positions of the robot work envelop off limits.外文文獻(xiàn)翻譯自動控制器對于運(yùn)動的一個很久的處理是如何去辨別自動控制與通用的一般的運(yùn)動設(shè)備的不同之處。最近出現(xiàn)了一個令人感興趣的情況,一個制造者嘗試給一條組裝線設(shè)置一個辨認(rèn)系統(tǒng)。這目的是為了用一個監(jiān)控系統(tǒng)去找到正在移動的物體。那時,一個機(jī)器人手臂作每次取它們中間的一個出來的動作。這時,工程師們孜孜不倦地去計(jì)算多眾相關(guān)的各個位置運(yùn)動的假設(shè)因素。最后,這些結(jié)果和運(yùn)動影像用照相機(jī)照下來。這些假設(shè)的因素讓動作控制器推理出其物理的位置,部分位置的數(shù)據(jù)是來自虛擬系統(tǒng)數(shù)據(jù),那時直接控制手臂到正確的位置來取出它們之中的一件。但問題就是,各種相關(guān)聯(lián)的位置必須在每次工作和維修后回到同一線位置。這些如此細(xì)致的計(jì)算的數(shù)據(jù)變得無用的,這需要重新計(jì)算新的移位。 最主要的困難是不理解一些基本的原理,是如何區(qū)別一般大致的運(yùn)動和眾多的特殊的自動控制運(yùn)動,這兩者看起來是相類似的,通常使用Pentium信息處理器或者使用Hybird 處理器配備一個普通的CPU的信息處理機(jī)專門用于處理一個或者更多數(shù)字信號。然而,自動控制器的軟件結(jié)構(gòu)與通用的運(yùn)動設(shè)備是不相同。首先,辨別運(yùn)動控制的軟件,其大致由閉環(huán)位置和速度控制,操作協(xié)調(diào)職責(zé)和協(xié)調(diào)監(jiān)督這些常規(guī)的程序來控制工作。一個最重要的情況必須記下來,就是監(jiān)督協(xié)調(diào)的程度如何。這種連接和操縱相關(guān)聯(lián)的監(jiān)督工作不是簡單的延伸發(fā)出位置要求和常規(guī)的單軸程序。另一種說法,這種監(jiān)督程序的程度是相對簡單的。自動控制器的監(jiān)督系統(tǒng)是更加復(fù)雜的。首先,很多自動控制系統(tǒng)反饋信息到高級的傳感器,這些傳感器是設(shè)置在單獨(dú)軸的位置,反饋的數(shù)據(jù)記錄。典型的系統(tǒng)包括工業(yè)監(jiān)測系統(tǒng)和控制傳感器。很多自動控制器技術(shù)工作包括如何使用傳感器計(jì)算出的機(jī)械手的運(yùn)動的軌跡數(shù)據(jù)信息。為了處理這些計(jì)算程序,監(jiān)督的軟件執(zhí)行一個軌跡編碼。這種編碼與傳感器反饋的物理位置和設(shè)置的位置界限是相關(guān)聯(lián)的,這種系統(tǒng)稱為world-同步系統(tǒng)。這種系統(tǒng)不同于通用的普通的機(jī)構(gòu),而普通的機(jī)構(gòu)偏向使用每單獨(dú)的基準(zhǔn)來控制每一個軸的運(yùn)動。World同步系統(tǒng)的一個好處就是它能夠排除各種各樣的相關(guān)聯(lián)的虛擬位置傳感數(shù)據(jù)因素。這種技術(shù)的情況大致如此,直接設(shè)置一個能夠自動計(jì)算信息數(shù)據(jù)的常規(guī)程序。然而,在起動時收集的數(shù)據(jù)的換算由world同步系統(tǒng)來計(jì)算比用任何手工操作計(jì)算出的虛擬數(shù)據(jù)更加準(zhǔn)確。基準(zhǔn)運(yùn)動簡單的重復(fù)一個world-同步的線路是有用處的。讀者可能會想
收藏