多向固定支架冷沖壓工藝及級進模設計-沖壓模具【含26張圖紙】
喜歡就充值下載吧。資源目錄里展示的全都有,下載后全都有請放心下載,原稿可自行編輯修改=【QQ:1304139763可咨詢交流】喜歡就充值下載吧。喜歡就充值下載吧。資源目錄里展示的全都有,下載后全都有請放心下載,原稿可自行編輯修改=【QQ:1304139763可咨詢交流】喜歡就充值下載吧。喜歡就充值下載吧。資源目錄里展示的全都有,下載后全都有請放心下載,原稿可自行編輯修改=【QQ:1304139763可咨詢交流】喜歡就充值下載吧。
編 號 無錫太湖學院 畢 業(yè) 設 計 ( 論 文 ) 題目: 多向固定支架冷沖壓工藝及級進模設計 信 機 系 機 械 工 程 及 自 動 化 專 業(yè) 學 號: 0923235 學生姓名: 裴永勝 指導教師: 鐘建剛 (職稱:副教授) (職稱: ) 2013 年 5 月 25 日 無錫太湖學院本科畢業(yè)設計(論文) 誠 信 承 諾 書 本人鄭重聲明:所呈交的畢業(yè)設計(論文) 多向固定支 架冷沖壓工藝及級進模設計 是本人在導師的指導下獨立進行 研究所取得的成果,其內(nèi)容除了在畢業(yè)設計(論文)中特別加 以標注引用,表示致謝的內(nèi)容外,本畢業(yè)設計(論文)不包含 任何其他個人、集體已發(fā)表或撰寫的成果作品。 班 級: 機械 95 學 號: 0923235 作者姓名: 裴永勝 2013 年 5 月 25 日 I 無 錫 太 湖 學 院 信 機 系 機 械 工 程 及 自 動 化 專 業(yè) 畢 業(yè) 設 計 論 文 任 務 書 一、題目及專題: 1、題目 多向固定支架冷沖壓工藝及級進模設計 2、專題 二、課題來源及選題依據(jù) 來源于無錫海諾有限公司,是電器產(chǎn)品上的一個零件。 模具是機械工程及其自動化專業(yè)的一個專業(yè)方向,選擇模具方 向的畢業(yè)設計題目完全符合本專業(yè)的要求,從應用性方面來說,模具 又是生產(chǎn)效率極高的工具之一,能有效保證產(chǎn)品一致性和可更換性, 具有很好的發(fā)展前途和應用前景。該產(chǎn)品外形適中,沖壓工藝設計很 復雜,計算過程很繁,其正確性非常重要,要求學生要有良好的心理 素質(zhì)和仔細認真的作風,因此對本課題的研究對學生也是一次很好 的煅練機會。 三、本設計(論文或其他)應達到的要求: 綜合應用各種所學的專業(yè)知識,在規(guī)定的時間內(nèi)對產(chǎn)品進行冷沖 壓工藝分析,制訂完整的沖壓工藝方案,并完成整副模具設計、數(shù)據(jù) 計算和圖紙(所有圖紙折合 A0 不少于 2.5 張)繪制,具體內(nèi)容如下: 1完成模具裝配圖:1 張(A0 或 A1); II 2零件圖:主要是非標準件零件圖(不少于 5 張); 3冷沖壓工藝卡片:1 張 ; 4設計說明書:1 份(15000 字以上,其中參考文獻不少于 10 篇,外文 不少于 5 篇); 5翻譯 8000 以上外文印刷字符,折合中文字數(shù)約 5000 字的有關技 術資料或?qū)I(yè)文獻,內(nèi)容要盡量結(jié)合課題。 四、接受任務學生: 機械 95 班 姓名 裴永勝 五、開始及完成日期: 自 2012 年 11 月 12 日 至 2013 年 5 月 25 日 六、設計(論文)指導(或顧問): 指導教師簽名 簽名 簽名 教 研 室 主 任 學科組組長研究所 所長簽名 系主任 簽名 2012 年 11 月 12 III 摘 要 本模具采用切廢料方式進行沖裁,故模具結(jié)構采用沖孔、導正、彎曲、切斷的工序 設計,排樣采用單排橫排排列。并采用正裝方式設計模具結(jié)構,即凹模裝在下模部分, 凹模采用浮動方式,并裝有內(nèi)部小導柱。首先為了正確控制送料步距采用單側(cè)側(cè)刃定距, 在主要位置采用導正銷導正精確定位。由于料很薄,沖壓速度較快,卸料采用彈性卸料 結(jié)構,建議彈性材料采用彈簧。廢料采用在凹模(下模)向下推出,產(chǎn)品自動向下落下。 帶料采用自動左右送料裝置。 經(jīng)過詳細分析和計算最終排樣方案為:側(cè)刃切邊,沖導正孔,沖2個非圓孔(廢料), 沖5個非圓孔(廢料),沖2個非圓孔(廢料),成形,中間向下彎曲,向上彎曲,最后 切斷。 關鍵詞:多向固定支架;沖壓工藝;排樣;級進模 IV Abstract The die used to cut waste by punching, punching die structure, guide, bending, cutting process design, arranged in a single row of horizontal nesting. And dress design the die structure die mounted on the lower die part, to die with floating and equipped with a small internal guide post. First order to properly control the feeding step away from the unilateral side of the blade fixed pitch in the main location pilots to precise positioning. The faster the material is thin, stamping, elastic Stripper Stripper structure, it is recommended that an elastic material with spring. Waste using the die (mold) launched down automatically fall down. With material automatically around feeding device. After a detailed analysis and calculation of the final nesting program: the side edge trimming, pierced pilot hole, punch two non-circular hole (waste), red five non-round hole (waste), two non-circular hole punch (waste) , forming the intermediate bent downwardly bent upwardly, and finally cut. Key words:Multi-directional mounting bracket;Stamping process;Nesting;Progressive die V 目 錄 摘 要 .III ABSTRACT .IV 目 錄 .V 1 緒論 .1 1.1 本課題的研究內(nèi)容和意義 .1 1.2 國內(nèi)外發(fā)展狀況 .2 1.3 本課題應達到的要求 .3 2 沖壓工藝設計 .4 2.1 沖壓件簡介 .4 2.2 沖壓的工藝性分析 .5 2.3 沖壓工藝方案的確定 .7 2.3.1 沖壓模具類型 .7 2.3.2 沖壓工藝分析和計算 .7 3 多向固定支架連續(xù)模設計 .10 3.1 模具結(jié)構 .10 3.2 確定其搭邊值 .10 3.3 確定排樣圖 .11 3.3.1 送料步距與帶料寬度 .11 3.3.2 排樣方案 .13 3.4 材料利用率計算 .13 3.5 凸、凹模等刃口尺寸的確定 .14 3.5.1 側(cè)刃凸、凹模刃口尺寸計算 .14 3.5.2 導正孔凸、凹模刃口尺寸計算 .14 3.5.3 梯形廢料凸、凹模刃口尺寸計算 .15 3.5.4 矩形廢料凸、凹模刃口尺寸計算 .17 3.5.5 矩形廢料凸、凹模刃口尺寸計算 .18 3.5.6 矩形廢料凸、凹模刃口尺寸計算 .19 3.5.7 矩形廢料凸、凹模刃口尺寸計算 .20 3.5.8 方形廢料凸、凹模刃口尺寸計算 .21 3.5.9 成形凸、凹模刃口尺寸計算 .22 3.5.10 向下彎曲凸、凹模刃口尺寸計算 .23 3.5.11 U 型彎曲凸、凹模刃口尺寸計算 .23 3.5.12 切斷凸、凹模刃口尺寸計算 .25 3.6 沖壓力計算 .26 3.6.1 沖孔部分沖壓力 .26 3.6.2 側(cè)刃沖壓力 .27 3.6.3 成形部分沖壓力 .28 VI 3.6.4 向下彎曲部分沖壓力 .28 3.6.5 U 型彎曲部分沖壓力 .28 3.6.6 切斷部分沖壓力 .29 3.6.7 總沖壓力 .29 3.7 壓力機選用 .29 3.8 壓力中心計算 .30 3.9 模具主要零部件的結(jié)構設計 .31 3.9.1 凹模結(jié)構及設計 .31 3.9.2 卸料板設計 .33 3.9.3 凸模固定板設計 .33 3.9.4 凸模墊板設計 .34 3.9.5 凹模墊板設計 .35 3.9.6 側(cè)刃的結(jié)構設計 .35 3.9.7 導正孔凸模結(jié)構設計 .36 3.9.8 梯形凸模結(jié)構設計 .37 3.9.9 矩形凸模結(jié)構設計 .37 3.9.10 矩形凸模結(jié)構設計 .38 3.9.11 矩形凸模結(jié)構設計 .39 3.9.12 矩形凸模結(jié)構設計 .39 3.9.13 方形凸模結(jié)構設計 .40 3.9.14 成形凸模結(jié)構設計 .41 3.9.15 向下彎曲凸模結(jié)構設計 .41 3.9.16 U 型彎曲凸模結(jié)構設計 .42 3.9.17 切斷凸模結(jié)構設計 .43 3.9.18 前側(cè)導板設計 .43 3.9.19 后側(cè)導板設計 .44 3.9.20 U 型彎曲凹模鑲塊設計 .44 3.9.21 承料板設計 .45 3.10 標準件確定 .46 3.10.1 模架確定 .46 3.10.2 上模螺釘確定 .47 3.10.3 上模銷確定 .47 3.10.4 下模螺釘確定 .47 3.10.5 下模銷確定 .47 3.10.6 卸料螺釘確定 .47 3.10.7 卸料彈簧設計 .47 3.10.8 凹模浮頂彈簧設計 .48 3.10.9 凹模浮動卸料螺釘確定 .48 3.10.10 彎曲彈頂彈簧設計 .48 VII 3.10.11 側(cè)刃固定螺釘確定 .49 3.10.12 U 型彎曲凸模固定螺釘確定 .49 3.10.13 小導柱確定 .49 3.10.14 凹模上小導套確定 .49 3.10.15 卸料板上小導套確定 .49 3.10.16 導料板固定螺釘確定 .49 3.10.17 導料板銷確定 .49 3.10.18 側(cè)刃擋塊設計 .49 3.11 模具閉合高度、校驗壓力機 .50 4 結(jié)論與展望 .51 4.1 結(jié)論 .51 4.2 不足之處及未來展望 .51 致 謝 .53 參考文獻 .54 多向固定支架冷沖壓工藝及級進模設計 1 1 緒論 1.1 本課題的研究內(nèi)容和意義 本次設計是在我們學完了大學的全部基礎課,技術基礎課以及專業(yè)課之后而進行。 此次的設計是對大學期間所學各課程及相關的應用繪圖軟件的一次深入的綜合性的總復 習,也是一次理論聯(lián)系實際的訓練。該零件的生產(chǎn)離不開模具,只有高效、精密、長壽 命的模具才能生產(chǎn)出低成本,高品質(zhì)的產(chǎn)品。本次畢業(yè)任務研究該零件的成形工藝并進 行模具設計。 沖壓是利用安裝在沖壓設備上的模具對材料進行施加壓力,使其產(chǎn)生分離或塑性變 形。從而獲得所需零件的一種壓力加工方法。沖壓通常是指在常溫下對材料進行冷變形 加工,主要采用板料加工所需零件。所以也叫冷沖壓和板料沖壓。沖壓是材料壓力加工 和塑性加工的方法之一。隸屬于材料成型技術。 沖壓所用的模具稱作沖模,簡稱沖模,沖模是將材料批量加工所需沖件的專用工具。 沖模在沖壓中至關重要。沒用符合條件的沖模批量生產(chǎn)沖壓就難以進行,沒有先進的沖 模,先進的沖壓工藝就無法進行。沖壓工藝與模具沖壓設備和沖壓材料夠成沖壓加工的 三要素。只有相互結(jié)合才能沖出壓件。與機械加工及塑性加工相比沖壓技術無方面方面 還是經(jīng)濟都有獨特的優(yōu)勢特點。主要表現(xiàn)如下: 1、沖壓加工效率高,操作方便,易于實現(xiàn)機械化和自動化。這是應為沖壓是依靠沖 壓和機械設備來完成的普通壓力機的行程次數(shù)每分鐘可達幾十次,高速壓力機每分鐘可 達成百上千次。 2、沖壓時由于模具保證了尺寸和形狀精度。一般不破壞沖壓件的質(zhì)量,而模具的壽 命一般較長,沖壓質(zhì)量穩(wěn)定,互換性好。 3、沖壓可加工尺寸范圍較大的和形狀較復雜的零件如小到鐘表秒表大到汽車重梁和 覆蓋件等,加上沖壓效果的冷變形硬化效果,沖壓件的強度和剛度較高。 4、沖壓一般沒有切削廢料生成,材料消耗較少,并不需其他加熱設備,因而是一種 省料節(jié)能的加工方法。 但是沖壓加工所用的模具一般具有專用性,有時一個復雜零件需模具才能完成,模 具制造的精度要高技術要求高,是技術密集型產(chǎn)品。所以只有批量比較大的時候沖壓加 工的優(yōu)點才能充分體現(xiàn)出來。從而獲得較好經(jīng)濟效益。 沖壓模具是沖壓生產(chǎn)必不可少的工藝裝備,是技術密集型產(chǎn)品。沖壓件的質(zhì)量、生 產(chǎn)效率與生產(chǎn)成本等與模具的設計和制造有直接關系。模具設計與制造的技術水平的高 低,是衡量一個國家產(chǎn)品制造技術水平高低的重要標志之一,在很大程度上決定著產(chǎn)品 的質(zhì)量、效益以及新產(chǎn)品的開發(fā)能力。通過對此課題的研究主要掌握機械工藝模具設計 的一般方法與基本工序。鞏固模具設計與模具制造工藝等專業(yè)理論知識在生產(chǎn)中的應用; 并靈活應用 CAD、Pro/E 等繪圖軟件來進行模具設計;懂得如何獲得資料、手冊查閱。培 養(yǎng)自己綜合應用理論知識去解決分析實際問題,提高自己的創(chuàng)造力。使我們學生找到自 己的不足,同時在檢閱資料是了解到本國模具行業(yè)與國外發(fā)達國家的一些差距,從而找 到努力方向,以此激勵自己努力學習、天天向上,為自己所從事的事業(yè)做出貢獻。 無錫太湖學院學士學位論文 2 1.2 國內(nèi)外發(fā)展狀況 模具工業(yè)是國民經(jīng)濟的重要基礎工業(yè)之一。模具是工業(yè)生產(chǎn)中的基礎工藝裝備,是 一種高附加值的高精密集型產(chǎn)品,也是高新技術產(chǎn)業(yè)化的重要領域,其技術水平的高低 已經(jīng)成為衡量一個國家制造業(yè)水平的重要標志。 20 世紀 80 年代以來,國民經(jīng)濟的高速發(fā)展對模具工業(yè)提出了越來越高的要求,同時 為模具的發(fā)展提供了巨大的動力。這些年來,中國模具發(fā)展十分迅速,模具工業(yè)一直以 15%左右的增長速度快速發(fā)展。振興和發(fā)展中國的模具工業(yè),日益受到人們的重視和關注。 “模具是工業(yè)生產(chǎn)的基礎工藝裝備”已經(jīng)取得了共識。目前,中國有 17000 多個模具生 產(chǎn)廠點,從業(yè)人數(shù)約 50 多萬。在模具工業(yè)的總產(chǎn)值中,沖壓模具約占 50%,塑料模具約 占 33%,壓鑄模具約占 6%,其他各類模具約占 11%。近年來,中國模具工業(yè)企業(yè)的所有 制成分也發(fā)生了變化。除了國有專業(yè)廠家外,還有集體企業(yè)、合資企業(yè)、獨資企業(yè)和私 營企業(yè),他們都得到了迅速的發(fā)展。許多模具企業(yè)十分重視技術發(fā)展。加大了用于技術 進步的投入力度,將技術進步作為企業(yè)發(fā)展的重要動力。此外,許多研究機構和院校也 開展了模具技術的研究與開發(fā)。 目前我國模具生產(chǎn)總量已居世界第三,但是制造水平總體上比德、美等國家落后許 多,也比韓國、新加坡等國落后而且國內(nèi)模具市場過早陷入了價格戰(zhàn)的誤區(qū),還缺乏自 主創(chuàng)新的能力,尤其缺乏誠信可靠的市場體系。據(jù)報道,約有 65%的歐洲客戶認為中國 模具價格雖低但質(zhì)量存在問題。 產(chǎn)品質(zhì)量不高。國內(nèi)模具生產(chǎn)商工藝條件參差不齊,差距很大?,F(xiàn)代模具行業(yè)早已 走出以手工制模的時代,進入了數(shù)字化時代,實現(xiàn)了無圖化生產(chǎn),靠計算機設計,通過 計算機輸入數(shù)據(jù)加工制作模具。我國不少廠家由于設備不配合,很多工作以來手工完成, 嚴重影響了精度很質(zhì)量。標準化水平不高。模具是專用成形工具產(chǎn)品,雖然個性化強, 但也是工業(yè)產(chǎn)品,所以標準化十分重要。模具標準化工作主要包括模具技術標注的制訂 與執(zhí)行、模具標準件的生產(chǎn)和應用以及有關標準的宣傳、貫徹和推廣等工作。中國模具 標準化工作起步較晚,加之宣傳、貫徹和推廣工作力度小,因此模具標準化落后于生產(chǎn)。 更落后于許多工業(yè)發(fā)達的國家。貫徹模具標準,采用模具標準件,不但能有效提高模具 質(zhì)量,而且能降低模具生產(chǎn)成本及打打縮短模具生產(chǎn)周期。隨著工業(yè)產(chǎn)品多品種、小批 量、個性化、快周期生產(chǎn)的發(fā)展,為了提高市場經(jīng)濟中得快速應變能力和競爭能力,在 模具生產(chǎn)周期愈來愈重要的今天,模具標準化的意義更為重大。 其他還有一些問題,比如缺乏相關人才、面對外資企業(yè)的挑戰(zhàn)以及缺乏自主品牌等。 我國模具將來大體發(fā)展方向應該如下: 1)模具結(jié)構日趨大型,精密,復雜及壽命日益提高; 2)CAD/CAE/CAM 技術在模具設計中的大量應用; 3)快速經(jīng)濟制模技術的推廣應用; 4)新技術在模具設計制造中的推廣應用; 5)提高模具標準化水平和標準件的使用率; 6)開發(fā)優(yōu)質(zhì)模具材料和先進表面處理技術; 7)高速削銑在模具中的推廣應用; 多向固定支架冷沖壓工藝及級進模設計 3 8)研究和應用模具的高速測量技術和逆向工程; 9)開發(fā)成型新工藝和新模具,培養(yǎng)新理念和新模式。 1.3 本課題應達到的要求 此次設計主要是圍繞多項固定支架模具設計展開的,運用落料、沖孔、彎曲等沖壓 飛、工序設計冷沖壓成形復合模具。通過近期事件查閱資料和畢業(yè)調(diào)研,我對本課題的 主要設計意圖有了一定的了解,認真分析了要完成的設計任務。本課題要解決的關鍵問 題主要包括以下三點: 1. 對零件進行工藝分析,進行沖壓工藝方案和模具結(jié)構方案設計; 2. 對復合沖壓模具零部件工藝參數(shù)進行參數(shù)選擇及驗算; 3. 確定冷沖壓加工工藝方案,繪制復合沖壓模具裝配圖和零件圖。 對于上述關鍵問題,雖然處理起來比較困哪,但自己也要一步步解決。本課題需要 運用機械、材料成形、冷沖壓模具、CAD、Pro/E 等畫圖軟件的知識,需要相當廣闊的知 識面和較高的專業(yè)水平。具體的解決方法包括以下幾個方面: 1. 在課題研究初期,我借閱了大量有關冷沖壓模具設計制造方面的書籍,同時在網(wǎng) 上搜索了大量關于冷沖壓模具的資料與論文。并結(jié)合課題要求,有針對性的摘抄了一定 的讀書筆記。 2. 深入工廠進行課題調(diào)研,了解模具設計時間工作中需要考慮的問題。虛心向工人 師傅們請教本課題中遇到的不解之處,為以后的設計提供資料和積累寶貴經(jīng)驗,避免走 不必要的彎路。同時,虛心向老師請教設計過程中遇到的問題。 3. 通過所學知識和大量查閱資料對零件進行工藝分析和工藝參數(shù)計算,根據(jù)零件所 需冷沖壓工序設計出復合沖壓模具。 無錫太湖學院學士學位論文 4 2 沖壓工藝設計 2.1 沖壓件簡介 形狀和尺寸如下圖所示。材料為 08F,板材厚度 0.5mm。 零件圖如下: 圖 2.1 零件圖 表 2-1 沖裁和拉深件未注公差尺寸的偏差 1 尺寸的類型基本尺寸 包容表面 被包容表面 暴露表面及中心距 3 +0.25 -0.25 36 +0.30 -0.30 0.15 610 +0.36 -0.36 1018 +0.43 -0.43 0.215 1830 +0.52 -0.52 3050 +0.62 -0.62 0.31 5080 +0.74 -0.74 80120 +0.87 -0.87 0.435 120180 +1.00 -1.00 180250 +1.15 -1.15 0.575 250315 +1.30 -1.30 315400 +1.40 -1.40 0.70 400500 +1.55 -1.55 500630 +1.75 -1.75 0.875 630800 +2.00 -2.00 8001000 +2.30 -2.30 1.15 10001250 +2.60 -2.60 1.15 查表 2-1 沖裁和拉深件未注公差尺寸的偏差(即參考文獻1,P217 頁,表 8-18 沖裁 和拉深件未注公差尺寸的偏差),得各尺寸的偏差,各尺寸帶偏差后的尺寸如圖 2.2 所示。 多向固定支架冷沖壓工藝及級進模設計 5 圖 2.2 帶偏差的零件圖 2.2 沖壓的工藝性分析 沖壓工藝分析主要考慮產(chǎn)品的沖壓成形工藝,最主要的是包括技術和經(jīng)濟兩方面內(nèi) 容。在技術方面,根據(jù)產(chǎn)品圖紙,主要分析零件的形狀特點、尺寸大小、精度要求和材 料性能等因素是否符合沖壓工藝的要求;在經(jīng)濟方面,主要根據(jù)沖壓件的生產(chǎn)批量,分 析產(chǎn)品成本,闡明采用沖壓生產(chǎn)可以取得的經(jīng)濟效益。因此工藝分析,主要是討論在不 影響零件使用的前提下,能否以最簡單最經(jīng)濟的方法沖壓出來。 1.影響沖壓件工藝性的因素很多,從技術和經(jīng)濟方面考慮,主要因素: 工件主要是以彎曲為主,部分成形。 工件展開后外形為平板形狀,適宜沖裁工件。 工件沒有懸壁。 材料為普通碳素鋼 08F,是常見的沖壓材料。 工件尺寸要求不是很高,尺寸未注公差按 IT14 級處理。 生產(chǎn)批量。一般來說,大批量生產(chǎn)時,可選用連續(xù)和高效沖壓設備,以提高生產(chǎn) 效率;中小批量生產(chǎn)時,常采用簡單?;驈秃夏?,以降低模具制造費用。 綜上所述,此工件適宜沖裁。 2.本沖壓件工藝分析如下: 圖形分析形狀較復雜,展開后相對不是很復雜,主要是落料、沖孔、彎曲、成 形。 尺寸分析尺寸公差要求一般,未注公差尺寸均取 IT14 級。 材料 08F,是常見的沖裁材料。 零件用的是厚 0.5mm 的 08F 鋼。 08F 鋼為極軟的碳素鋼,強度、硬度很低,而韌性和塑性極高,具有良好的深沖、拉 延、彎曲和鐓粗等冷加工性能、焊接性能。但存在時效敏感性,淬硬性及淬透性極低。 無錫太湖學院學士學位論文 6 大多軋制成高精度的薄板或冷軋鋼帶用以制造易加工成形,強度低的深沖壓或深拉延的 覆蓋零件和焊接構件。 1)化學成份: 碳 C :0.050.11 硅 Si:0.03 錳 Mn:0.250.50 硫 S :0.035 磷 P :0.035 鉻 Cr:0.10 鎳 Ni:0.30 銅 Cu:0.20 2)力學性能: 抗拉強度 b(MPa):275383MPa 屈服強度 s(MPa):177MPa 伸長率 5() :32 斷面收縮率 () :60 硬度:未熱處理,131HB 試樣尺寸:試樣尺寸為 25mm 3)熱處理規(guī)范及金相組織: 熱處理規(guī)范:正火 930,30min,空冷。 金相組織:鐵素體+極少量珠光體。 表 2.1 黑色金屬的力學性能 2 材料名稱 牌號 材料狀態(tài) 抗剪強度/(Mpa) 抗拉強度 b/(Mpa) 伸長率 10/(%) 屈服強度 s/(Mpa) Q235 310380 440470 2125 240 普通碳素鋼 Q275 未退火 400500 580620 1519 280 08F 216304 275383 32 177 10 260340 300440 29 210 20 280400 360510 25 250 優(yōu)質(zhì)碳素結(jié) 構鋼 45 已退火 440560 550700 16 360 軟態(tài) 260 300 35 380 H62 半硬態(tài) 300 380 20 200 軟態(tài) 240 300 40 100 黃銅 H68 半硬態(tài) 280 350 25 軟 260 300 38 140錫磷青銅 錫鋅青銅 QSn6.5-2.5 QSn4-3 硬 480 550 35 多向固定支架冷沖壓工藝及級進模設計 7 特硬 500 650 12 550 批量一年生產(chǎn) 30 萬件是批量生產(chǎn)。 沖壓工序落料、沖孔、彎曲、成形。 沖裁間隙 根據(jù)料厚 t=0.5,再查表 2-2 沖裁模初始雙面間隙(即參考文獻 3,P20 頁,表 2-10) , 得: 雙面間隙 Z0.0400.060mm。 表 2-2 沖裁模初始雙面間隙 Z3 08F、08、10、15 , 09Mn2、Q235 16Mn 45、50 65Mn材料厚度 t Zmin Zmax Zmin Zmax Zmin Zmax Zmin Zmax 小于 0.5 極小間隙 0.5 0.040 0.060 0.040 0.060 0.040 0.060 0.040 0.060 0.6 0.048 0.072 0.048 0.072 0.048 0.072 0.048 0.072 0.7 0.064 0.092 0.064 0.092 0.064 0.092 0.064 0.092 0.8 0.072 0.104 0.072 0.104 0.072 0.104 0.064 0.092 0.9 0.090 0.126 0.090 0.126 0.090 0.126 0.090 0.126 1.0 0.100 0.140 0.100 0.140 0.100 0.140 0.090 0.126 2.3 沖壓工藝方案的確定 2.3.1 沖壓模具類型 經(jīng)過對沖壓件的工藝分析后,結(jié)合產(chǎn)品進行必要的工藝計算,并在分析沖壓工藝, 工序順序組合方式的基礎上,提出各種可能的沖壓分析方案。 方案一:單工序模。模具結(jié)構簡單,落料和沖孔可以生產(chǎn)出工件,需要兩副模具, 由于一年需生產(chǎn) 30 萬件工件,數(shù)量大,生產(chǎn)效率低于實際生產(chǎn)需求。故不能采用單工序 模。 方案二:復合模。本產(chǎn)品工序太多,不能采用一副復合模完成。 方案三:連續(xù)模。連續(xù)模的優(yōu)點:能實現(xiàn)沖壓自動化,日產(chǎn)量非常高,滿足一年生 產(chǎn) 30 萬件的生產(chǎn)要求。可節(jié)省勞動力成本,能保證工件的位置精度和工件的質(zhì)量;連續(xù) 模的缺點:模具結(jié)構復雜,制造成本高,模具調(diào)試難度大,制造周期長,通常材料率很 低,必須批量非常大,否則產(chǎn)品成本很高。 因此綜合考慮工藝和模具設計的可行性,產(chǎn)品質(zhì)量,生產(chǎn)周期,產(chǎn)品批量,節(jié)省成 本等因素,采用方案三。 2.3.2 沖壓工藝分析和計算 主要成形工藝:彎曲、沖孔、成形和落料或切斷,其中彎曲有兩處,外側(cè)比較大的 是 U 型彎曲,需作展開計算,中間小的彎曲成 30也需展開計算。成形部分比較淺,不 需展開計算,落料或切斷有后續(xù)工序再計無錫太湖學院冷沖壓工藝卡片零件名稱多向固定支架零件圖號116301材料牌號及規(guī)格08F0.532L毛坯種類帶料毛坯尺寸32L每毛坯可制件數(shù)1件/每25.08工序號工序名稱工序內(nèi)容沖壓設備工藝裝備一次加工數(shù)工 序 附 圖10沖裁1個側(cè)刃沖3個孔J53-40模具和自動送料機構120沖孔沖2個孔J53-40模具和自動送料機構130落料沖3個孔J53-40模具和自動送料機構140成形成形J53-40模具和自動送料機構150彎曲向下彎曲J53-40模具和自動送料機構160彎曲向上彎曲J53-40模具和自動送料機構170沖裁切斷J53-40模具和自動送料機構180檢驗檢驗班級機械95姓名裴永勝學號0923235日期2013.5.16批改日期編號無錫太湖學院畢業(yè)設計(論文)相關資料題目: 多向固定支架冷沖壓工藝 及級進模設計 機電 系 機械工程及自動化專業(yè)學 號: 0923235學生姓名: 裴永勝 指導教師: 鐘建剛(職稱:副教授 ) (職稱: )2013年5月25日目 錄一、畢業(yè)設計(論文)開題報告二、畢業(yè)設計(論文)外文資料翻譯及原文三、學生“畢業(yè)論文(論文)計劃、進度、檢查及落實表”四、實習鑒定表無錫太湖學院畢業(yè)設計(論文)開題報告題目: 多向固定支架冷沖壓工藝 及級進模設計 信機 系 機械工程及自動化 專業(yè)學 號: 0923235 學生姓名: 裴永勝 指導教師: 鐘建剛 (職稱:副教授 ) (職稱: )2012年11月20日 課題來源來自于無錫海諾有限公司,是電器產(chǎn)品上的一個零件??茖W依據(jù)(包括課題的科學意義;國內(nèi)外研究概況、水平和發(fā)展趨勢;應用前景等)(1)課題科學意義模具產(chǎn)業(yè)是國家經(jīng)濟基本產(chǎn)業(yè),據(jù)統(tǒng)計金屬零件粗加工的75%,精加工的50%和塑料零件的90%都是用模具加工完成的。用模具成型的制件所表現(xiàn)出來的高精度,高復雜性,高一致性,高生產(chǎn)率,和低消耗,是其他制造加工方法所無法比擬的。模具工業(yè)的發(fā)展水平標志著一個國家工業(yè)水品及產(chǎn)品開發(fā)能力。沖壓生產(chǎn)靠模具與設備完成其加工產(chǎn)品,生產(chǎn)率高,操作簡便,易于實現(xiàn)機械化與自動化,可以獲得其他方法不能或難以制造的復雜零件。沖壓產(chǎn)品一般不需要再經(jīng)機械加工就可使用,沖壓加工過程一般也無需加熱毛肧。所以沖壓加工不但節(jié)約金屬材料還節(jié)約能源,沖壓產(chǎn)品一般還具有質(zhì)量輕和剛性好的特點。沖壓模具的設計是沖壓生產(chǎn)的基礎,是沖壓生產(chǎn)必不可少的工藝裝備。沖壓設計的水平標志著沖壓生產(chǎn)工藝的先進性合理性以及生產(chǎn)成本的經(jīng)濟性,他在很大程度上反映了生產(chǎn)技術水平。沖壓件的質(zhì)量,生產(chǎn)效率以及生產(chǎn)成本等,與沖壓模具設計與制造有根本關系。 (2)研究狀況及其發(fā)展前景我國沖壓模具的質(zhì)量和生產(chǎn)工藝水平總體要比國際先進水平低許多,而模具生產(chǎn)周期卻要比國際先進水平長很多。產(chǎn)品質(zhì)量水平低,主要表現(xiàn)在精度,表面粗糙度,壽命及模具的復雜程度上。生產(chǎn)工藝水平低主要表現(xiàn)在加工工藝和加工裝備等方面。模具壽命只有國際先進水平的50%左右,大型,精密,技術含量高的沖壓模具和精密沖裁模具每年都要花大量資金進口。但一些低檔次的沖模以供過于求,市場競爭非常激烈。模具技術的發(fā)展是模具工業(yè)發(fā)展的最關鍵的一個因素,其發(fā)展方向應該為適應模具產(chǎn)品“交貨期短”,“精度高”,和“價格低”的要求服務。未來我國模具工業(yè)和技術主要發(fā)展方向應主要集中在以下幾個方面:1模具CAD/CAE/CAM集成化,三維化,智能化2模具檢測加工設備向高效精密多功能發(fā)展3快速經(jīng)濟制造技術的廣泛應用4開發(fā)新的模具材料和表面處理技術5模具研磨拋光向自動化智能化發(fā)展6模具工業(yè)新工藝,新理念,新模式的發(fā)展。研究內(nèi)容本課題主要圍繞多項固定支架的連續(xù)模設計,重點在于沖壓工藝、排樣方案的設計。根據(jù)所設計的尺寸選擇模具的零件和模架的大小。對于學習模具設計的學生具有實踐和理論結(jié)合的教學意義。擬采取的研究方法、技術路線、實驗方案及可行性分析根據(jù)多項固定支架的外形,安排沖壓工藝,采取先沖孔,后落料的連續(xù)模沖壓工藝。排樣方案選用最普通的直排,實驗完全由計算數(shù)據(jù)決定整套模具裝配圖及其零件圖的優(yōu)劣,完全以數(shù)據(jù)為依據(jù)進行的實驗分析,對于整套設計有完整的設計思路,具體的設計計算完全可以通過查表或者公式書籍可以獲得,完全有可行性。研究計劃及預期成果研究計劃:2012年11月12日-2012年12月2日:按照任務書要求查閱論文相關參考資料,填寫畢業(yè)設計開題報告書。2012年12月3日-2013年3月1日:工作計劃、進度。2013年3月4日-2013年3月15日:查閱參考資料,學習并翻譯一篇與畢業(yè)設計相關的英文材料。2013年3月18日-2013年4月12日:沖壓工藝設計,模具結(jié)構設計,刃口尺寸和主要零件結(jié)構設計和尺寸計算。2013年4月15日-2013年5月3日:繪制模具裝配圖和零件圖。2013年5月6日-2013年5月25日:工藝文件、畢業(yè)論文撰寫和修改工作。預期成果:1完成模具裝配圖:2張(A0或A1);2零件圖:主要非標準件零件圖(不少于5張);3冷沖壓工藝卡片:1張;4設計說明書:1份;5翻譯8000以上外文印刷字符或譯出約5000左右漢字的有關技術資料或?qū)I(yè)文獻,內(nèi)容要盡量結(jié)合課題。特色或創(chuàng)新之處沖壓加工的產(chǎn)品壁薄重量輕,可以形成形狀復雜的零件。生產(chǎn)效率高,生產(chǎn)過程易實現(xiàn)機械化和自動化,適合大批量生產(chǎn)。加工產(chǎn)生的切削少甚至無,零件直接成型,材料利用率高。已具備的條件和尚需解決的問題已具備的條件:擁有模具設計的一定基礎,知道模具結(jié)構,能夠根據(jù)模具所需選擇需要的零件。擁有一些關于模具設計方面的資料。尚需解決的問題:對設計的每個環(huán)節(jié)考慮不是很周全。連續(xù)模結(jié)構因素設計連續(xù)模時,要準確掌握加工速度、沖材材質(zhì)、沖壓力、工位數(shù)、模具間隙等各主要因素,否則就不能發(fā)揮模具的效用和綜合加工方法,特別是在高速沖壓精密件時,模具損傷多,工件精度低,得不到滿意效果。指導教師意見 指導教師簽名:年 月 日教研室(學科組、研究所)意見 教研室主任簽名: 年 月 日系意見 主管領導簽名: 年 月 日英文原文 Improving Performance of Progressive DiesProgressive die stamping is a cost-effective and safe method of producing components. Careful design and construction of dies will ensure optimum performance.A progressive die performs a series of fundamental sheet metal operations at two or more stations in the die during each press stroke. These simultaneous operations produce a part from a strip of material that moves through the die. Each working station performs one or more die operations, but the strip must move from the first station through each succeeding station to produce a complete part. Carriers, consisting of one or more strips of material left between the parts, provide movement of the parts from one die station to the next. These carrier strips are separated from the parts in the last die station.There are six elements that should be addressed when designing and building a progressive die to maximize its performance: Interpreting the part print, Starting material into the die, Part lifters and part feeding, Flexible part carriers, Upper pressure pads, and Drawn shells.Interpreting the Part PrintThe first step in the proper design of a progressive die is to correctly analyze the part print. The tool designer must interpret the print to determine the function of the part by looking for such things as the type of material, critical surfaces, hole size and location, burr location, grain direction requirements, surface finish and other factors.The die designer must understand the part well, particularly if it has irregular shapes and contours. However, modern computer-drawn prints make this more difficult because computer-drawn part data can be downloaded directly to the die-design computer. As a result, the designer may not become thoroughly familiar with important part features.Also, many computer-drawn parts are more difficult to understand, because often, only one surface is shown and it may be the inside or outside surface. Computer drawings often show all lines, including hidden features, as solid lines instead of dotted lines. This leads to interpretation errors, which in turn leads to errors in the building of the die.To better understand complex part shapes, it is helpful to build a sight model of the part using sheet wax, rubber skins or wood models. Dimensional accuracy is not critical for these models, as they are used primarily to visualize the part. Rubber skins and sheet wax also can be used to develop preform shapes and to develop the best positions for the part as it passes through each die operation in the progressive die.Starting Material in the DieCare must be taken to ensure that the strip is started correctly into the die. Improper location of the lead end of the strip will do more damage to the die in the first 10 strokes of the press than the next 100,000 strokes. Lead-in gauges must have large leads and a ledge to support the lead end of the coil strip when it is inserted into the die. Large leads on the gauges are important so that the die setup person does not have to reach into the die, as well as for minimizing the time required to start a new strip into the die. Also, one gauge should be adjustable to compensate for variation in strip width,.The position of the lead edge of the strip is critical for the first press stroke, and must be determined for every die station to ensure that piercing punches do not cut partial holes in the lead edge. This could cause punch deflection or result in a partial cut with trimming punches, which can result in an unbalanced side load as the strip passes through the die. Any of these conditions can result in a shift of the punch-to-die relationship that may cause shearing of the punches.Improper location of the lead edge of the strip also can result in an unbalanced forming or flanging condition that can shift the upper die in relation to the lower die. Heels should be required to absorb this side load, particularly when forming thick materials.A pitch notch and pitch stop can provide a physical point to locate and control the lead edge of the strip. Brass tags or marker grooves also can provide a visual location, but these are not as accurate or as effective as a pitch notch stop. The press can be prevented from operating with either a short feed or over feed by mounting the pitch stop on a pivot and monitoring it with a limit switch.Part Lifters and Part FeedingProgressive dies often require the strip to be lifted from the normal die work level to the feed level before strip feeding takes place. This can vary from a small amount-to clear trim and punching burrs-to several inches to allow part shapes to clear the die.Normally, all lifters should rise to the same height so that the strip is supported in a level plane during forward feed. The strip must not sag between lifters; otherwise parts will be pulled out of their correct station location spacing. Bar lifters provide good support and are better than spring pins or round lifters notched on one side of the strip.Often, a good bar lifter system allows higher press speeds because feed problems are eliminated. Although the initial cost is more than round lifters, performance is better and setup time is reduced.As the strip is started into the lead-in gauges, the strip should be able to feed automatically through all the following die stations without requiring manual alignment in each set of gauges and lifters. The strip also must be balanced on the lifters so that it does not fall to one side during feed. A retainer cap can be mounted on the top of the outside bar lifters. This produces a groove that captures the strip during feed and prevents strip buckling.Gauging and lifter conditions can be simulated during die design by cutting a piece of transparent paper to the width of the strip. The lead edge of the paper is placed over the plan view of the die design at the location the strip will be for the first press stroke. Then the paper is marked with all of the operations that will be performed at the first die station-for example, notching and punching. The paper strip then is moved to the second station on the drawing and the operations for both the first and second stations are marked. This process is repeated through all the die stations to illustrate what the real part strip will look like when it is started into the die and helps determine the adequacy of gauges and lifters.To transport the strip from one station to the next in a progressive die, some material must be left between the parts on the strip. This carrier material may be solid across the width of the strip, or may be one or more narrow ribbons of material, see part carriers sidebar.Many parts require the edge of the blank to flow inward during flanging, forming or drawing operations. This may require the carrier to move sideways or flex vertically, or both, during the die operation. A flexible loop must be provided in the carrier to allow flexing and movement of the blank without pulling the adjacent parts out of position, Fig. 2.Another concern is the vertical breathing of parts in die stations during the closing and opening of the die in the press stroke. For example, vertical breathing takes place between the draw stations of parts requiring more than one draw to complete the part, Fig. 3. Vertical breathing also occurs when a flange is formed up in a progressive die station that is adjacent to stations that use upper pressure pads to hold the adjacent parts down.It is important to consider the flexing of the carrier during the upstroke of the press as well as during the downstroke because the action may be different. This can be simulated in the design stage by making an outline of the cross-section of the part, the pressure pads and the stationary-mounted steels on separate sheets of paper and then placing these sheets on top of each other in layers over the die section views. This will show the relative position of the part as the die closes and during the reverse action as the die ram opensPart CarriersA common feature in all progressive stamping dies is the material that transports the parts from station-to-station as it passes through the die. This material is known by various terms, such as carrier, web, strip, tie, attachment, etc. In this instance, we will use the term carrier, of which there are five basic styles:Solid carrier-All required work can be accomplished on the part without preliminary trimming. The part is cut off or blanked in the final operation.Center carrier-The periphery of the part is trimmed; leaving only a narrow tie near the middle of the part. This permits work to be performed all around the part. A wide center carrier permits trimming only at the sides of the part.Lance and carry at the center-The strip is lanced between parts, leaving a narrow area near the center to carry the parts. This eliminates scrap material between parts.Outside carriers-The carriers are attached to the sides of the part so that work can be done to the center of the part.One side carrier-The part is carried all the way or part of the way through the die with the carrier on one side only. This permits work on three sides of the part.The type or shape of the carrier will vary depending on what the part requires as it progresses from station to station in the die. The stock width may be left solid if no part material motion is required during die closure or it can be notched to create one, two or even three carriers between the partsThe carriers can be straight, form a zig-zag pattern or have loops between the parts depending on where attachment points to the part are available or to accommodate whatever clearance may be required by the die tooling. As the part is formed, flanged or drawn into a shell, the carrier may have to move sideways or up and down as the die closes and opens.When die operations cause the carrier to move, it usually will be required to flex or stretch. Regardless of carrier flexing, their key function is to move the parts close enough to the next station so that pilots, gauges and locators can put the parts into their precise location as the die closes.If the carrier acquires a permanent stretch, the parts may progress too far to fit on the next station, or in the case that the die has two carriers, one carrier may develop permanent stretch with no stretch in the other carrier. This will create edge camber in the strip, causing it to veer to one side. This results in poor part location.A stretched carrier can be shortened to its correct length by putting a dimple in the carrier. If a center carrier or one-sided carrier develops camber, the strip can be straightened by dimpling or scoring one side of the carrier. Construct the dimple and scoring punches so that they are easily adjusted sideways for position and vertically for depth.as it is delivered from the coil can cause the strip to bind in the running gauges that guide the material during the feed cycle. This binding may cause the carriers to buckle, which results in short feeds. It often helps to relieve the guide edge of the gauges in between stations and have tighter gauge control at the work station.Another option is to eliminate camber by trimming both sides of the material in the beginning of the die. By adding stops at the end of these trim notches they can be used as pitch control notches to prevent progression overfeed.Optimum Carrier ProfileThe optimum carrier profile is affected by some of the following conditions: Space available between parts: Try to keep the carriers within the stock width and pitch required for the blank. If this is not possible then the designer must add to the width and/or the progression of the material to provide adequate carrier room. Attachment points to the part: If two carriers are used, try to keep the profile and length of the carriers somewhat the same so that any effect of carrier flexing is close to being balanced. Clearance for punch and die blocks: Punch blocks that extend below the stock or die blocks that extend above the stock when the die closes will require clearance in relation to the parts and the carriers. If a loop of the carrier interferes with blocks it may be possible to form the loop vertical to provide clearance. Thickness of the material: Large parts with thin material may require stiffener beads to add strength to the carrier for stock feeding. Another stiffening and strip guiding method is to lance and flange the edge of the stock, which also can be used as a progression notch. The total of the strip: Heavy parts in long dies require more force to push the strip through the die. However, the weight is usually thick material, and thick material is stiffer than thin material. As a rule of thumb, flexible carriers for materials of 0.020 in. to 0.060 in. are about 3/16 in. to 5/16 in. wide. For stock thicknesses above and below this thickness range, carrier width is a best judgment call. Depending on all the die factors involved, under normal conditions the carriers should be a consistent width for their full length, but especially in the area of flexing. Since nearly every stock feeder pushes material through the die rather than pull the material, the carrier must be strong enough to push the parts all the way through the die.A detection switch actuated by a complete feed of the strip at the exit of the die can detect buckling. If action of the die during closure or opening of the press requires the carriers to flex, design the carrier with loops that are long enough to flex without breaking, but still strong enough to feed all the parts to their full progression. If two flex carriers are not strong enough to feed the strip, consider three carriers.Try to make the radii in flex loops as large as practical. Sharp corners or small radii will concentrate stress of flexing, making it the first point to fracture during flexing of the carrier. Also avoid any steps or nicks in the edges of the carrier.Upper Pressure PadsBecause of size or function, many progressive dies require two or more pressure pads in the upper die. Each may require a different travel distance to perform the work in the individual die station, such as trimming or forming or drawing.However, the upper pressure pads often are used to push the material lifters down by pressing against the strip, which pushes the lifters down. In this situation, all of the pressure pads that push material lifters down should have the same travel distance. If the upper pressure pads travel different distances, the strip will not be pushed down evenly. This can pull adjacent parts out of the progression, making it difficult to locate the parts in their proper station position after the feed cycle.If the part requires a flange to be formed up, the part carrier must have a flex loop to allow for vertical breathing of the part or provide a pressurized punch/pad with the same travel as the other pressure pads. The force required by the pressurized punch/pad has to be adequate to form the flanges up during the downstroke while the punch/ pad is in the extended position. This keeps the strip from breathing vertically as it is pushed down from the feed level to the normal work level.When the strip reaches the work level, the pressurized punch/pad stops its downward motion while the upper die continues down for punching, trimming, down flanging and other operations. Springs or nitrogen cylinders can be used for pressure in these pressurized punch/ pad stations, but they must have enough preload force to form the flanges up and to collapse the lower gripper pad before the upper punch/ pad recedes中文譯文 提高級進模性能級進模是一種成本低廉且安全的零件制造方法,. 精心設計模具結(jié)構可確保最佳性能。一副級進模在一次沖壓動作中可在模具不同工位進行不同的沖壓操作。這些在通過模具的帶料上同時進行的沖壓動作制造出零件。每個工位可進行一個或多個操作,但要生產(chǎn)出完整的零件條料必須經(jīng)過每一個工位。而零件依靠零件之間的載體輸送到各個工位,并在最后一個工位進行切除。為了使模具性能最佳,在設計和制造級進模具時,必須考慮以下五個方面: 研究零件 送料方式 零件頂出和送進 設計零件載體 壓料裝置零件排樣設計級進模首先必須正確地理解零件圖,必須考慮材料、重要表面、孔的尺寸和和位置、毛刺方向、材料纖維方向、表面粗糙度和其他因素。模具設計要求設計者必須對零件有透澈的了解,特別是對形狀和輪廓不規(guī)則的零件。然而,現(xiàn)代計算機繪圖使得零件數(shù)據(jù)可以直接下載到設計者的電腦上,使得設計者可能不熟悉零件重要特性。另外,因為計算機繪圖經(jīng)常出現(xiàn)這種情況,圖上只顯示一個面,可能是內(nèi)表面也可能是外表面,使得很多計算機繪制的圖形難以看懂。電腦繪圖經(jīng)常顯示所有的線條,包括隱藏部分,為實線而非虛線,這導致錯誤,進而導致模具結(jié)構錯誤。為了更好地看懂復雜零件外形,可用蠟板,橡膠皮或者木板做成具有零件某個視圖方向上的外形的模型。模型不要求精確的尺寸,其主要是用來形象地表示零件形狀。也可以用這些模型來決定應該在級進模的哪個工位成形零件哪個部分的外形。材料送進必須確保條料準確地進入模具。如果條料導向錯誤,那么最初的10次沖壓動作對模具造成的損傷可能比接下來的100000次沖裁還大。當卷料送進入模具時必須順利導向且有限位裝置。良好的導向能力時非常重要的,因為這樣操作人員就不必將手伸入模具,而且可以縮短接上下一卷材料所需的時間。除此之外,導向裝置必須時可調(diào)的以適應條料寬度的變化。對第一次沖裁而言條料送進位置非常重要,必須確定條料在每個工位的送進位置的以保證凸模不沖偏,會導致沖頭變形或切不完整,可能造成條料不平衡送進時單側(cè)受力。任一種可能都會造成凸凹模錯位使得沖頭受剪切損壞。條料送進不當成形時可能導致偏載或者邊緣卷起,影響上下模之間的相對位置。墊塊必須能夠承受這些載荷,特別是成形較厚材料時更應如此。一個步距的凹口或止動銷可作為定位點控制條料送進位置,黃銅標簽或標記槽也提供了視覺定位 ,但是這些都不夠準確,不夠有效。通過在將步距限位銷安裝在支點上,并用限位開關監(jiān)控以防止條料送進不到位或送進過多以保護壓力機。零件頂出和送進級進模通常要求將條料抬高到距模具工作位置一定高度水平線上,使得條料送進到指定位置,而與清理廢料和毛刺或者利用制件外形清理模具無關。正常情況下,所有抬高裝置必須上升到同一高度使條料在送進過程中保持水平。條料不能由凹陷,否則零件會被從正確位置拔出。相對于安排
收藏