《人教新課標A版 高中數(shù)學必修3 第三章概率 3.1隨機事件的概率 3.1.2概率的意義 同步測試D卷》由會員分享,可在線閱讀,更多相關《人教新課標A版 高中數(shù)學必修3 第三章概率 3.1隨機事件的概率 3.1.2概率的意義 同步測試D卷(12頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、人教新課標A版 高中數(shù)學必修3 第三章概率 3.1隨機事件的概率 3.1.2概率的意義 同步測試D卷姓名:_ 班級:_ 成績:_一、 單選題 (共15題;共30分)1. (2分) 我國古代數(shù)學名著九章算術有“米谷粒分”題:糧倉開倉收糧,有人送來米1534石,驗得米內夾谷,抽樣取米一把,數(shù)得254粒內夾谷28粒,則這批米內夾谷約為( ) A . 1365石B . 338石C . 169石D . 134石2. (2分) 盒中有1個黑球,9個白球,它們除顏色不同外,其他方面沒什么差別,現(xiàn)由10人依次摸出1個球后放回,設第1個人摸出黑球的概率是P1 , 第10個人摸出黑球的概率是P10 , 則( )
2、A . P10= P1B . P10= P1C . P10=0D . P10=P13. (2分) 從某班學生中任意找出一人,如果該同學的身高小于160cm的概率為0.2,該同學的身高在160,175cm的概率為0.5,那么該同學的身高超過175cm的概率為( ) A . 0.8B . 0.7C . 0.3D . 0.24. (2分) 假定一個家族有兩個小孩,生男孩和生女孩是等可能的,在已知有一個是女孩的前提下,則另一個小孩是男孩的概率為( ) A . B . C . D . 5. (2分) 有編號分別為1,2,3,4,5的5個紅球和5個黑球,從中隨機取出4個,則取出球的編號互不相同的概率為(
3、)A . B . C . D . 6. (2分) (2019武漢模擬) 大學生小明與另外3名大學生一起分配到某鄉(xiāng)鎮(zhèn)甲、乙丙3個村小學進行支教,若每個村小學至少分配1名大學生,則小明恰好分配到甲村小學的概率為( ) A . B . C . D . 7. (2分) 甲、乙兩人下棋,兩人下成和棋的概率是 , 乙獲勝的概率是 , 則是( )A . 乙勝的概率B . 乙不輸?shù)母怕蔆 . 甲勝的概率D . 甲不輸?shù)母怕?. (2分) 一個單位有職工80人,其中業(yè)務人員56人,管理人員8人,服務人員16人,為了解職工的某種情況,決定采取分層抽樣的方法。抽取一個容量為10的樣本,每個管理人員被抽到的概率為(
4、)A . B . C . D . 9. (2分) 設為兩個事件,且 , , 則( )A . 與互斥B . 與對立C . D . A、B、C都不對10. (2分) 甲、乙兩人各擲一次骰子(均勻的正方體,六個面上分別為l,2,3,4,5,6點),所得點數(shù)分別記為x、y,則的概率為( )A . B . C . D . 11. (2分) (2016肇慶模擬) 體育課的排球發(fā)球項目考試的規(guī)則是:每位學生最多可發(fā)球3次,一旦發(fā)球成功,則停止發(fā)球,否則一直發(fā)到3次為止設學生一次發(fā)球成功的概率為p (p0),發(fā)球次數(shù)為X,若X的數(shù)學期望EX1.75,則p的取值范圍是( ) A . (0, )B . ( ,1)
5、C . (0, )D . ( ,1)12. (2分) (2015高二上大方期末) 從1,2,3,4,5,6這六個數(shù)中,不放回地任意取兩個數(shù),每次取一個數(shù),則所取的兩個數(shù)都是偶數(shù)的概率為( )A . B . C . D . 13. (2分) 從1,2,3,4,5,6,7,8,9這9個數(shù)字中任取兩個數(shù),分別有下列事件:恰有一個是奇數(shù)和恰有一個是偶數(shù);至少有一個是奇數(shù)和兩個都是奇數(shù);至少有一個是奇數(shù)和兩個都是偶數(shù);至少有一個是奇數(shù)和至少有一個是偶數(shù)其中為互斥事件的是( )A . B . C . D . 14. (2分) (2018高二上沈陽期末) 將一個半徑適當?shù)男∏蚍湃肴鐖D所示的容器最上方的入口處
6、,小球將自由落下,小球在下落的過程中,將3次遇到黑色障礙物,最后落入 袋或 袋中,已知小球每次遇到黑色障礙物時,向左、右兩邊下落的概率分別為 ,則小球落入 袋中的概率為 ( )A . B . C . D . 15. (2分) 設m,n分別是先后拋擲兩枚骰子所得的點數(shù),則m,n中有4的概率為( ) A . B . C . D . 二、 填空題 (共5題;共6分)16. (1分) (2017高二上佳木斯期末) 任取 , ,則 的概率為_ 17. (1分) (2018高二上河北月考) 下列關于概率和統(tǒng)計的幾種說法:10名工人某天生產(chǎn)同一種零件,生產(chǎn)的件數(shù)分別是15,17,14,10,15,17,17
7、,16,14,12,設其平均數(shù)為a,中位數(shù)為b,眾數(shù)為c,則a,b,c的大小關系為cab;樣本4,2,1,0,2的標準差是2;在面積為S的ABC內任選一點P,則隨機事件“PBC的面積小于 ”的概率為 ;從寫有0,1,2,9的十張卡片中,有放回地每次抽一張,連抽兩次,則兩張卡片上的數(shù)字各不相同的概率是 .其中正確說法的序號有_18. (1分) (2016高二下張家港期中) 甲,乙兩人獨立地破譯1個密碼,他們能破譯密碼的概率分別是 和 ,則這個密碼能被破譯的概率為_ 19. (2分) (2018楊浦模擬) 擲一顆均勻的骰子,出現(xiàn)奇數(shù)點的概率為_20. (1分) 下列事件A、B是相互獨立事件的是_一
8、枚硬幣擲兩次,事件A表示“第一次為正面”,事件B表示“第二次為反面”袋中有2白,2黑的小球,不放回的摸兩球,事件A表示“第一次摸到白球”,事件B表示“第二次摸到白球”擲一枚骰子,事件A表示“出現(xiàn)的點數(shù)為奇數(shù)”,事件B表示“出現(xiàn)的點數(shù)為偶數(shù)”事件A表示“人能活到20歲”,事件B表示“人能活到50歲”三、 解答題 (共5題;共25分)21. (5分) (2017高一上山西期末) 2016年某招聘會上,有5個條件很類似的求職者,把他們記為A,B,C,D,E,他們應聘秘書工作,但只有2個秘書職位,因此5人中僅有2人被錄用,如果5個人被錄用的機會相等,分別計算下列事件的概率: (1) C得到一個職位 (
9、2) B或E得到一個職位 22. (5分) 氣象部門提供了某地區(qū)今年六月份(30天)的日最高氣溫的統(tǒng)計表如下: 日最高氣溫t(單位:)t2222t2828t32t32天數(shù)612YZ由于工作疏忽,統(tǒng)計表被墨水污染,Y和Z數(shù)據(jù)不清楚,但氣象部門提供的資料顯示,六月份的日最高氣溫不高于32的頻率為0.9某水果商根據(jù)多年的銷售經(jīng)驗,六月份的日最高氣溫t(單位:)對西瓜的銷售影響如下表:日最高氣溫t(單位:)t2222t2828t32t32日銷售額X(千元)2568(1) 求Y,Z的值; (2) 若視頻率為概率,求六月份西瓜日銷售額的期望和方差; (3) 在日最高氣溫不高于32時,求日銷售額不低于5千元
10、的概率 23. (5分) (2017重慶模擬) 某工廠生產(chǎn)甲,乙兩種芯片,其質量按測試指標劃分為:指標大于或等于82為合格品,小于82為次品現(xiàn)隨機抽取這兩種芯片各100件進行檢測,檢測結果統(tǒng)計如表: 測試指標70,76)76,82)82,88)88,94)94,100芯片甲81240328芯片乙71840296()試分別估計芯片甲,芯片乙為合格品的概率;()生產(chǎn)一件芯片甲,若是合格品可盈利40元,若是次品則虧損5元;生產(chǎn)一件芯片乙,若是合格品可盈利50元,若是次品則虧損10元在(I)的前提下,(i)記X為生產(chǎn)1件芯片甲和1件芯片乙所得的總利潤,求隨機變量X的分布列和數(shù)學期望;(ii)求生產(chǎn)5件
11、芯片乙所獲得的利潤不少于140元的概率24. (5分) (2017高三上連城開學考) 某班從6名干部中(其中男生4人,女生2人)選3人參加學校的義務勞動 (1) 設所選3人中女生人數(shù)為,求的分布列及E; (2) 求男生甲或女生乙被選中的概率; (3) 在男生甲被選中的情況下,求女生乙也被選中的概率 25. (5分) (2017四川模擬) 某商場進行有獎促銷活動,顧客購物每滿500元,可選擇返回50元現(xiàn)金或參加一次抽獎,抽獎規(guī)則如下:從1個裝有6個白球、4個紅球的箱子中任摸一球,摸到紅球就可獲得100元現(xiàn)金獎勵,假設顧客抽獎的結果相互獨立 ()若顧客選擇參加一次抽獎,求他獲得100元現(xiàn)金獎勵的概率;()某顧客已購物1500元,作為商場經(jīng)理,是希望顧客直接選擇返回150元現(xiàn)金,還是選擇參加3次抽獎?說明理由;()若顧客參加10次抽獎,則最有可能獲得多少現(xiàn)金獎勵?第 12 頁 共 12 頁參考答案一、 單選題 (共15題;共30分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、二、 填空題 (共5題;共6分)16-1、17-1、18-1、19-1、20-1、三、 解答題 (共5題;共25分)21-1、21-2、22-1、22-2、22-3、23-1、24-1、24-2、24-3、25-1、