《2020版高考數(shù)學(xué)一輪復(fù)習(xí) 課后限時(shí)集訓(xùn)14 導(dǎo)數(shù)與函數(shù)的單調(diào)性 理(含解析)北師大版》由會(huì)員分享,可在線閱讀,更多相關(guān)《2020版高考數(shù)學(xué)一輪復(fù)習(xí) 課后限時(shí)集訓(xùn)14 導(dǎo)數(shù)與函數(shù)的單調(diào)性 理(含解析)北師大版(7頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、課后限時(shí)集訓(xùn)(十四)導(dǎo)數(shù)與函數(shù)的單調(diào)性(建議用時(shí):60分鐘)A組基礎(chǔ)達(dá)標(biāo)一、選擇題1已知函數(shù)f(x)的導(dǎo)函數(shù)f(x)的圖像如圖所示,則函數(shù)f(x)的圖像可能是() AB CDC由導(dǎo)函數(shù)f(x)的圖像可知,函數(shù)yf(x)先減再增,可排除選項(xiàng)A,B;又f(x)0的根為正數(shù),即yf(x)的極值點(diǎn)為正數(shù),所以可排除選項(xiàng)D,選C.2函數(shù)f(x)ln xax(a0)的遞增區(qū)間為()A.BC. D(,a)A由題意,知f(x)的定義域?yàn)?0,),由f(x)a0(a0),得0x,f(x)的遞增區(qū)間為.3已知函數(shù)f(x)x3ax在(1,1)上遞減,則實(shí)數(shù)a的取值范圍為()A(1,) B3,)C(,1 D(,3Bf
2、(x)x3ax,f(x)3x2a.又f(x)在(1,1)上遞減,3x2a0在(1,1)上恒成立,a3,故選B4(2019蘭州模擬)函數(shù)f(x)在定義域R內(nèi)可導(dǎo),f(x)f(4x),且(x2)f(x)0.若af(0),bf,cf(3),則a,b,c的大小關(guān)系是()Acba BcabCabc DbacC由f(x)f(4x)可知,f(x)的圖像關(guān)于直線x2對稱,根據(jù)題意知,當(dāng)x(,2)時(shí),f(x)0,f(x)為減函數(shù);當(dāng)x(2,)時(shí),f(x)0,f(x)為增函數(shù)所以f(3)f(1)ff(0),即cba,故選C.5若函數(shù)f(x)ln xax22x存在遞減區(qū)間,則實(shí)數(shù)a的取值范圍是()A(1,) B1,
3、)C(,1 D(1,0)Af(x)ax2,由題意知f(x)0有實(shí)數(shù)解,x0,ax22x10有實(shí)數(shù)解當(dāng)a0時(shí),顯然滿足;當(dāng)a0時(shí),只需44a0,1a0.綜上知a1.二、填空題6函數(shù)f(x)x22ln x的遞減區(qū)間是_(0,1)函數(shù)f(x)x22ln x的定義域?yàn)?0,),令f(x)2x0,得0x1,f(x)的遞減區(qū)間是(0,1)7(2019銀川診斷)若函數(shù)f(x)ax33x2x恰好有三個(gè)單調(diào)區(qū)間,則實(shí)數(shù)a的取值范圍是_(3,0)(0,)由題意知f(x)3ax26x1,由函數(shù)f(x)恰好有三個(gè)單調(diào)區(qū)間,得f(x)有兩個(gè)不相等的零點(diǎn),需滿足a0,且3612a0,解得a3,所以實(shí)數(shù)a的取值范圍是(3,
4、0)(0,)8定義在(0,)上的函數(shù)f(x)滿足x2f(x)10,f(1)6,則不等式f(lg x)5的解集為_(1,10)構(gòu)造g(x)f(x)5,則g(x)f(x)0,所以g(x)在(0,)上遞增因?yàn)閒(1)6,g(1)0,故g(x)0的解集為(0,1),即f(x)5的解集為(0,1),由0lg x1,得1x10,不等式的解集為(1,10)三、解答題9(2019遼南五校聯(lián)考)函數(shù)f(x)xexln xax.(1)若函數(shù)yf(x)在點(diǎn)(1,f(1)處的切線與直線y2(e1)(x1)平行,求實(shí)數(shù)a的值;(2)若函數(shù)f(x)在1,)上遞增,求實(shí)數(shù)a的取值范圍解(1)f(x)(x1)exa(x0),
5、f(1)2e1a2(e1),所以a1.(2)由函數(shù)yf(x)在1,)上遞增,可得f(x)(x1)exa0在1,)上恒成立,即a(x1)ex在1,)上恒成立,令g(x)(x1)ex,則g(x)(x2)ex0,所以g(x)在1,)上遞增,所以g(x)ming(1)2e1,所以a2e1.即a的取值范圍為(,2e110已知函數(shù)f(x)xexa(x1)2(其中e為自然對數(shù)的底數(shù)),求函數(shù)f(x)的單調(diào)區(qū)間解因?yàn)閒(x)xexa(x1)2,所以f(x)(x1)ex2a(x1)(x1)(ex2a),當(dāng)a0時(shí),ex2a0,令f(x)0,解得x1;令f(x)0,解得x1;當(dāng)a0時(shí),ln(2a)1,令f(x)0,
6、解得x1或xln(2a);令f(x)0,解得ln(2a)x1;當(dāng)a時(shí),f(x)0恒成立;當(dāng)a時(shí),ln(2a)1,令f(x)0,解得xln(2a)或x1;令f(x)0,解得1xln(2a)綜上,當(dāng)a0時(shí),f(x)的遞增區(qū)間是(1,),遞減區(qū)間為(,1);當(dāng)a0時(shí),f(x)的遞增區(qū)間是(,ln(2a)和(1,),遞減區(qū)間為(ln(2a),1);當(dāng)a時(shí),f(x)的遞增區(qū)間是(,),無遞減區(qū)間;當(dāng)a時(shí),f(x)的遞增區(qū)間是(,1)和(ln(2a),),遞減區(qū)間為(1,ln(2a)B組能力提升1若函數(shù)f(x)x2ax在上是增函數(shù),則a的取值范圍是()A1,0 B1,)C0,3 D3,)D據(jù)題意當(dāng)x時(shí),f
7、(x)2xa0恒成立,分離變量得a2x,令g(x)2x,易知函數(shù)在上為減函數(shù),故g(x)g3,故只需a3即可,故選D2(2019宜賓模擬)已知函數(shù)f(x)xln xx(xa)2(aR)若存在x,使得f(x)xf(x)成立,則實(shí)數(shù)a的取值范圍是()A. BC(,) D(3,)C由f(x)xf(x)成立,可得0.設(shè)g(x)ln x(xa)2,則存在x,使得g(x)0成立,即g(x)2(xa)0成立,即amin即可又x2,當(dāng)且僅當(dāng)x,即x時(shí)取等號(hào),a.故選C.3已知函數(shù)f(x)x24x3ln x在區(qū)間t,t1上不單調(diào),則t的取值范圍是_(0,1)(2,3)f(x)x4,x0.令g(x)(x1)(x3
8、),如圖要使f(x)在t,t1上不單調(diào),只需t1t1或t3t1,即0t1或2t3.4(2018合肥一模)已知f(x)ln(2x1)(aR)(1)討論f(x)的單調(diào)性;(2)若f(x)ax恒成立,求a的值解(1)f(x)的定義域?yàn)椋琭(x).令g(x)2x22axa,則若2x22axa0的根的判別式0,即當(dāng)0a2時(shí),對任意x,g(x)0恒成立,即當(dāng)x時(shí),f(x)0恒成立,f(x)在上遞增若2x22axa0的根的判別式0,即當(dāng)a2或a0時(shí),g(x)圖像的對稱軸為直線x.當(dāng)a0時(shí),0,且g0.對任意x,g(x)0恒成立,即對任意x,f(x)0恒成立,f(x)在上遞增當(dāng)a2時(shí),1,且g0.記g(x)0
9、的兩根分別為x1,x2,且x1(a),x2(a)當(dāng)x(x2,)時(shí),g(x)0,當(dāng)x(x1,x2)時(shí),g(x)0.當(dāng)x(x2,)時(shí),f(x)0,當(dāng)x(x1,x2)時(shí),f(x)0.f(x)在和(x2,)上遞增,在(x1,x2)上遞減綜上,當(dāng)a2時(shí),f(x)在上遞增;當(dāng)a2時(shí),f(x)在和上遞增,在,上遞減(2)f(x)ax恒成立等價(jià)于對任意x,f(x)ax0恒成立令h(x)f(x)axln(2x1)ax,則h(x)0h(1)恒成立,即h(x)在x1處取得最大值h(x).由h(1)0,得a1,當(dāng)a1時(shí),h(x),當(dāng)x時(shí),h(x)0;當(dāng)x(1,)時(shí), h(x)0.當(dāng)a1時(shí),h(x)在上遞增,在(1,)上遞減,從而h(x)h(1)0,符合題意a1.- 7 -