《2020年高考數(shù)學(xué)一輪復(fù)習(xí) 考點(diǎn)題型 課下層級(jí)訓(xùn)練10 二次函數(shù)與冪函數(shù)(含解析)》由會(huì)員分享,可在線閱讀,更多相關(guān)《2020年高考數(shù)學(xué)一輪復(fù)習(xí) 考點(diǎn)題型 課下層級(jí)訓(xùn)練10 二次函數(shù)與冪函數(shù)(含解析)(4頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、課下層級(jí)訓(xùn)練(十)二次函數(shù)與冪函數(shù)A級(jí)基礎(chǔ)強(qiáng)化訓(xùn)練1(2019山東濟(jì)南月考)函數(shù)y的圖象大致是()【答案】Cyx,其定義域?yàn)閤R,排除A,B,又01,圖象在第一象限為上凸的,排除D2(2019山東臨沂月考)已知冪函數(shù)f(x)(m23m3)xm1為偶函數(shù),則m()A1B2C1或2D3【答案】A函數(shù)f(x)為冪函數(shù),m23m31,即m23m20,解得m1或m2.當(dāng)m1時(shí),冪函數(shù)f(x)x2為偶函數(shù),滿足條件當(dāng)m2時(shí),冪函數(shù)f(x)x3為奇函數(shù),不滿足條件3(2019貴州凱里月考)函數(shù)f(x)2x2mx3,當(dāng)x2,)時(shí),f(x)是增函數(shù),當(dāng)x(,2時(shí),f(x)是減函數(shù),則f(1)的值為()A3 B1
2、3 C7 D5【答案】B函數(shù)f(x)2x2mx3圖象的對(duì)稱(chēng)軸為直線x,由函數(shù)f(x)的增減區(qū)間可知2,m8,即f(x)2x28x3,f(1)28313.4(2019陜西渭南月考)如果冪函數(shù)y(m23m3)xm2m2的圖象不過(guò)原點(diǎn),則m取值是()A1m2 Bm1或m2Cm2 Dm1【答案】B冪函數(shù)y(m23m3)xm2m2的圖象不過(guò)原點(diǎn),所以解得m1或2,符合題意5(2019陜西延安月考)已知二次函數(shù)f(x)滿足f(2x)f(2x),且f(x)在0,2上是增函數(shù),若f(a) f(0),則實(shí)數(shù)a的取值范圍是()A0,) B(,0C0,4 D(,04,)【答案】C由f(2x)f(2x)可知,函數(shù)f(
3、x)圖象的對(duì)稱(chēng)軸為x2,又函數(shù)f(x)在0,2上單調(diào)遞增,所以由f(a) f(0)可得0a4.6(2019浙江紹興月考)如果函數(shù)f(x)x2bxc對(duì)任意的x都有f(x1)f(x),那么()Af(2)f(0)f(2) Bf(0)f(2)f(2)Cf(2)f(0)f(2) Df(0)f(2)f(2)【答案】D由f(1x)f(x)知f(x)的圖象關(guān)于直線x對(duì)稱(chēng),又拋物線f(x)開(kāi)口向上,f(0)f(2)f(2)7(2019山東泰安月考)已知冪函數(shù)的圖象經(jīng)過(guò)點(diǎn),則函數(shù)的解析式f(x)_.【答案】x3設(shè)冪函數(shù)為f(x)x,因?yàn)閳D象經(jīng)過(guò)點(diǎn),f(2)23,從而3函數(shù)的解析式f(x)x3.8當(dāng)0xg(x)f(
4、x)如圖所示為函數(shù)f(x),g(x),h(x)在(0,1)上的圖象,由此可知,h(x)g(x)f(x)9已知冪函數(shù)f(x)x(m2m)1(mN*)(1)試確定該函數(shù)的定義域,并指明該函數(shù)在其定義域上的單調(diào)性;(2)若該函數(shù)f(x)的圖象經(jīng)過(guò)點(diǎn)(2,),試確定m的值,并求滿足條件f(2a)f(a1)的實(shí)數(shù)a的取值范圍【答案】解(1)因?yàn)閙2mm(m1)(mN*),而m與m1中必有一個(gè)為偶數(shù),所以m2m為偶數(shù),所以函數(shù)f(x)x(m2m)1(mN*)的定義域?yàn)?,),并且該函數(shù)在0,)上為增函數(shù)(2)因?yàn)楹瘮?shù)f(x)的圖象經(jīng)過(guò)點(diǎn)(2,),所以2(m2m)1,即22(m2m)1,所以m2m2,解得m
5、1或m2.又因?yàn)閙N*,所以m1,f(x)x.又因?yàn)閒(2a)f(a1),所以解得1af(a1)的實(shí)數(shù)a的取值范圍為.10已知函數(shù)f(x)x22ax2,x5,5(1)當(dāng)a1時(shí),求函數(shù)f(x)的最大值和最小值;(2)求實(shí)數(shù)a的取值范圍,使yf(x)在區(qū)間5,5上是單調(diào)函數(shù)【答案】解(1)當(dāng)a1時(shí),f(x)x22x2(x1)21,x5,5,所以當(dāng)x1時(shí),f(x)取得最小值1;當(dāng)x5時(shí),f(x)取得最大值37.(2)函數(shù)f(x)(xa)22a2的圖象的對(duì)稱(chēng)軸為直線xa,因?yàn)閥f(x)在區(qū)間5,5上是單調(diào)函數(shù),所以a5或a5,即a5或a5.故實(shí)數(shù)a的取值范圍是(,55,)B級(jí)能力提升訓(xùn)練11(2019
6、遼寧松原月考)設(shè)函數(shù)f(x)x2xa(a0),已知f(m)0,則()Af(m1) 0 Bf(m1) 0Cf(m1)0 Df(m1)0【答案】Cf(x)的對(duì)稱(chēng)軸為x,f(0)a0,f(x)的大致圖象如圖所示,由f(m)0,得1m0,m10,f(m1)f(0)0.12(2019貴州遵義月考)若f(x)x22ax與g(x)在區(qū)間1,2上都是減函數(shù),則a的取值范圍是_.【答案】(0,1由f(x)x22ax在1,2上是減函數(shù)可得1,2a,),a1. y在(1,)上為減函數(shù),由g(x)在1,2上是減函數(shù)可得a0,故01,即a2時(shí),f(x)在上單調(diào)遞減,在上單調(diào)遞增,不合題意;當(dāng)0 1,即0a2時(shí),符合題意
7、;當(dāng)0,即a0時(shí),不符合題意綜上,a的取值范圍是0,215已知二次函數(shù)f(x)ax2bx1(a,bR),xR.(1)若函數(shù)f(x)的最小值為f(1)0,求f(x)的解析式,并寫(xiě)出單調(diào)區(qū)間;(2)在(1)的條件下,f(x)xk在區(qū)間3,1上恒成立,試求k的取值范圍【答案】解(1)由題意知解得所以f(x)x22x1,由f(x)(x1)2知,函數(shù)f(x)的單調(diào)遞增區(qū)間為1,),單調(diào)遞減區(qū)間為(,1(2)由題意知,x22x1xk在區(qū)間3,1上恒成立,即kx2x1在區(qū)間3,1上恒成立,令g(x)x2x1,x3,1,由g(x)2知g(x)在區(qū)間3,1上是減函數(shù),則g(x)ming(1)1,所以k1,即k的取值范圍是(,1) 4