《2022屆高考數(shù)學(xué)二輪復(fù)習(xí) 第一篇 專題五 立體幾何 第1講 空間幾何體的三視圖、表面積與體積限時訓(xùn)練 文》由會員分享,可在線閱讀,更多相關(guān)《2022屆高考數(shù)學(xué)二輪復(fù)習(xí) 第一篇 專題五 立體幾何 第1講 空間幾何體的三視圖、表面積與體積限時訓(xùn)練 文(8頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、2022屆高考數(shù)學(xué)二輪復(fù)習(xí) 第一篇 專題五 立體幾何 第1講 空間幾何體的三視圖、表面積與體積限時訓(xùn)練 文【選題明細(xì)表】知識點、方法題號空間幾何體的三視圖1,2,9,11,12幾何體的表面積和體積3,6由三視圖求幾何體的表面積和體積4,5,7,10與球有關(guān)的接、切問題8,13,14一、選擇題1.一個四面體的頂點在空間直角坐標(biāo)系Oxyz中的坐標(biāo)分別是(1,0,1),(1,1,0),(0,1,1),(0,0,0),畫該四面體三視圖中的正視圖時,以zOx平面為投影面,則得到的正視圖可以為(A)解析:在空間直角坐標(biāo)系中作出四面體OABC的直觀圖如圖所示,作頂點A,C在zOx平面的投影是A,C,可得四面
2、體的正視圖.故選A.2.(2018合肥市第二次質(zhì)檢)如圖,在正方體ABCDA1B1C1D1中,E是棱A1B1的中點,用過點A,C,E的平面截正方體,則位于截面以下部分的幾何體的側(cè)(左)視圖為(A)解析:如圖,取B1C1的中點為F,連接AC,CF,EF,AE,截面AEFC以下部分為所求得的幾何體,易知選項A中的圖形為其側(cè)視圖.故選A.3.(2018山西省八校一聯(lián))軸截面為正方形的圓柱的外接球的體積與該圓柱的體積的比值為(C)(A)(B)(C)(D)2解析:設(shè)圓柱的底面半徑為r,由題意可知圓柱的高h(yuǎn)=2r.設(shè)外接球的半徑為R,則r2+r2=R2,故R=r.則圓柱的體積V1=r2h=2r3,外接球的
3、體積V2=R3=r3,所以=.故選C.4.(2018安徽省知名示范高中聯(lián)考)某幾何體的三視圖如圖所示,則該幾何體的體積為(C)(A)1(B)(C)(D)解析:法一該幾何體的直觀圖為四棱錐SABCD,如圖,SD平面ABCD,且SD=1,四邊形ABCD是平行四邊形,且AB=DC=1,連接BD,由題意知BDDC,BDAB,且BD=1,所以S四邊形ABCD=1,所以=S四邊形ABCDSD=.故選C.法二由三視圖易知該幾何體為錐體,所以V=Sh,其中S指的是錐體的底面積,即俯視圖中四邊形的面積,易知S=1,h指的是錐體的高,從正視圖和側(cè)視圖易知h=1,所以V=Sh=.故選C.5.(2018開封市10月定
4、位考試)某幾何體的三視圖如圖所示,其中俯視圖為扇形,則該幾何體的體積為(B)(A)4(B)2(C)(D)解析:由題意知幾何體的直觀圖如圖所示,該幾何體為圓柱的一部分,設(shè)底面扇形的圓心角為,由tan =,得=,故底面面積為22=,則該幾何體的體積為3=2.故選B.6.(2018太原市一模)已知三棱錐DABC中,CD底面ABC,ABC為正三角形,若AECD,AB=CD=AE=2,則三棱錐DABC與三棱錐EABC的公共部分構(gòu)成的幾何體的體積為(B)(A)(B)(C)(D)解析:設(shè)ADCE=F,因為CD=AE,所以F為CE的中點,則三棱錐FABC為三棱錐DABC與三棱錐EABC的公共部分,如圖,取AC
5、的中點M,連接FM,則FM=1,且FM底面ABC,故FM為三棱錐FABC的高.SABC=22=,故=1=.故選B.7.祖暅原理:“冪勢既同,則積不容異”.“冪”是截面積,“勢”是幾何體的高,意思是兩個同高的幾何體,如在等高處截面的面積恒相等,則體積相等.已知某不規(guī)則幾何體與如圖所示的幾何體滿足“冪勢同”,則該不規(guī)則幾何體的體積為(C)(A)(B)3(C)(D)6解析:三視圖對應(yīng)的幾何體為三棱錐,其長為5,寬為,由側(cè)視圖知其高為=,三棱錐的體積為V=5=,所以所求不規(guī)則幾何體的體積為.故選C.8.(2018惠州市第二次調(diào)研)如圖,某幾何體的三視圖是三個全等的等腰直角三角形且直角邊長都等于1,則該
6、幾何體的外接球的體積為(B)(A) (B) (C)3 (D)解析:還原幾何體為三棱錐ABCD,將其放入棱長為1的正方體中,如圖所示,則三棱錐ABCD外接球的半徑R=,該幾何體的外接球的體積V=R3=.故選B.9.(2018武漢市四月調(diào)研)某幾何體的三視圖如圖所示,則從該幾何體的所有頂點中任取兩個頂點,它們之間距離的最大值為(B)(A)(B)(C)2(D)2解析:由三視圖可知,該幾何體是一個四棱柱,記為四棱柱ABCDA1B1C1D1,將其放在如圖所示的長方體中,底面ABCD是邊長為1的正方形,四棱柱的高為1,連接AC1,觀察圖形可知,幾何體中兩頂點間距離的最大值為AC1的長,即=.故選B.10.
7、(2018鄭州市一中入學(xué)測試)某工件的三視圖如圖所示,現(xiàn)將該工件通過切削,加工成一個體積盡可能大的長方體新工件,并使新工件的一個面落在原工件的一個面內(nèi),則原工件材料的利用率為(材料利用率=)(A)(A) (B)(C)(D)解析:依題意知,題中的工件形狀是一個底面半徑為1、高為2的圓錐,設(shè)新工件的長、寬、高分別為a,b,c,截去的小圓錐的底面半徑、高分別為r,h,則有a2+b2=4r2,h=2r,設(shè)長方體的體積為abc=ab(2-2r)=4r2(1-r).設(shè)f(r)=4r2(1-r),則有f(r)=4r(2-3r),當(dāng)0r0,當(dāng)r1時,f(r)0,因此f(r)=4r2(1-r)的最大值是f()=
8、,則原工件材料的利用率為(122)=.故選A.二、填空題11.某三棱錐的三視圖如圖所示,則該三棱錐最長棱的棱長為.解析:三視圖所表示的幾何體的直觀圖如圖所示.結(jié)合三視圖知,PA平面ABC,PA=2,AB=BC=,AC=2.所以PB=,PC=2,所以該三棱錐最長棱的棱長為2.答案:212.一個幾何體的三視圖如圖所示,其中正(主)視圖是等邊三角形,俯視圖是半圓.現(xiàn)有一只螞蟻從點A出發(fā)沿該幾何體的側(cè)面環(huán)繞一周回到A點,則螞蟻所經(jīng)過路程的最小值為.解析:如圖所示,側(cè)面展開圖為一個四分之一圓與一個等邊三角形,從點A出發(fā)沿該幾何體的側(cè)面環(huán)繞一周回到A點,螞蟻所經(jīng)過路程的最小值為|AA1|=+.答案:+13
9、.(2018南昌市二模)一正三棱柱的三視圖如圖所示,該正三棱柱的所有頂點都在球O的球面上,則球O的表面積為.解析:由三視圖知正三棱柱底面正三角形的高為4.5,所以底面外接圓的半徑為r=4.5=3,又球心O到上、下面的距離為d=4,所以球O的半徑為R=5,所以S球=4R2=100.答案:10014.(2018武漢市四月調(diào)研)在四面體ABCD中,AC=CB=AB=AD=BD=1,且平面ABC平面ABD,則四面體ABCD的外接球半徑R=.解析:如圖,取AB的中點G,連接DG,CG,由題意,知ABC與ABD均為正三角形,則四面體ABCD的外接球球心O在過ABC的重心O1,且與平面ABC垂直的直線上,同時也在過ABD的重心O2,且與平面ABD垂直的直線上,易知四邊形OO1GO2為正方形.在ABC中,O1C=CG=AB=,O1G=CG=AB=,則OO1=,連接OC,則OC=,故四面體ABCD的外接球的半徑為.答案: