《2022-2023學(xué)年高中數(shù)學(xué) 2.2.2向量的減法運算及其幾何意義教案》由會員分享,可在線閱讀,更多相關(guān)《2022-2023學(xué)年高中數(shù)學(xué) 2.2.2向量的減法運算及其幾何意義教案(3頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、2022-2023學(xué)年高中數(shù)學(xué) 2.2.2向量的減法運算及其幾何意義教案教學(xué)目標(biāo):1. 了解相反向量的概念;2. 掌握向量的減法,會作兩個向量的減向量,并理解其幾何意義;3. 通過闡述向量的減法運算可以轉(zhuǎn)化成向量的加法運算,使學(xué)生理解事物之間可以相互轉(zhuǎn)化的辯證思想.教學(xué)重點:向量減法的概念和向量減法的作圖法.教學(xué)難點:減法運算時方向的確定.學(xué) 法:減法運算是加法運算的逆運算,學(xué)生在理解相反向量的基礎(chǔ)上結(jié)合向量的加法運算掌握向量的減法運算;并利用三角形做出減向量.教 具:多媒體或?qū)嵨锿队皟x,尺規(guī)授課類型:新授課教學(xué)思路:一、 復(fù)習(xí):向量加法的法則:三角形法則與平行四邊形法則A B D C 向量加
2、法的運算定律:例:在四邊形中, .解:二、 提出課題:向量的減法1 用“相反向量”定義向量的減法(1) “相反向量”的定義:與a長度相同、方向相反的向量.記作 -a(2) 規(guī)定:零向量的相反向量仍是零向量.-(-a) = a. 任一向量與它的相反向量的和是零向量.a + (-a) = 0 如果a、b互為相反向量,則a = -b, b = -a, a + b = 0 (3) 向量減法的定義:向量a加上的b相反向量,叫做a與b的差. 即:a - b = a + (-b) 求兩個向量差的運算叫做向量的減法.2 用加法的逆運算定義向量的減法: 向量的減法是向量加法的逆運算:OabBaba-b 若b +
3、 x = a,則x叫做a與b的差,記作a - b3 求作差向量:已知向量a、b,求作向量 (a-b) + b = a + (-b) + b = a + 0 = a 作法:在平面內(nèi)取一點O, 作= a, = b 則= a - b 即a - b可以表示為從向量b的終點指向向量a的終點的向量. 注意:1表示a - b.強調(diào):差向量“箭頭”指向被減數(shù)OABaBb-bbBa+ (-b)ab 2用“相反向量”定義法作差向量,a - b = a + (-b) 顯然,此法作圖較繁,但最后作圖可統(tǒng)一.4 探究:) 如果從向量a的終點指向向量b的終點作向量,那么所得向量是b - a.a-bAABBBOa-baab
4、bOAOBa-ba-bBAO-b)若ab, 如何作出a - b?三、 例題:例一、(P 例三)已知向量a、b、c、d,求作向量a-b、c-d. 解:在平面上取一點O,作= a, = b, = c, = d, ABCbadcDO 作, , 則= a-b, = c-dA B D C例二、平行四邊形中,a,b,用a、b表示向量、.解:由平行四邊形法則得: = a + b, = = a-b變式一:當(dāng)a, b滿足什么條件時,a+b與a-b垂直?(|a| = |b|)變式二:當(dāng)a, b滿足什么條件時,|a+b| = |a-b|?(a, b互相垂直)變式三:a+b與a-b可能是相當(dāng)向量嗎?(不可能, 對角線
5、方向不同)四、 練習(xí):87第1、2、3題五、 小結(jié):向量減法的定義、作圖法|六、 作業(yè):P91第7,8題七、 板書設(shè)計(略)八、 備用習(xí)題:1.在ABC中, =a, =b,則等于( )A.a+b B.-a+(-b) C.a-b D.b-a2.O為平行四邊形ABCD平面上的點,設(shè)=a, =b, =c, =d,則A.a+b+c+d=0 B.a-b+c-d=0 C.a+b-c-d=0 D.a-b-c+d=0.如圖,在四邊形ABCD中,根據(jù)圖示填空:a+b= ,b+c= ,c-d= ,a+b+c-d= .、如圖所示,O是四邊形ABCD內(nèi)任一點,試根據(jù)圖中給出的向量,確定a、b、c、d的方向(用箭頭表示),使a+b=,c-d=,并畫出b-c和a+d. 第題