142《全稱量詞與存在量詞(二)量詞否定》教案(新人教選修2-1選修1-1)

上傳人:仙*** 文檔編號:104794954 上傳時(shí)間:2022-06-11 格式:DOC 頁數(shù):4 大?。?5KB
收藏 版權(quán)申訴 舉報(bào) 下載
142《全稱量詞與存在量詞(二)量詞否定》教案(新人教選修2-1選修1-1)_第1頁
第1頁 / 共4頁
142《全稱量詞與存在量詞(二)量詞否定》教案(新人教選修2-1選修1-1)_第2頁
第2頁 / 共4頁
142《全稱量詞與存在量詞(二)量詞否定》教案(新人教選修2-1選修1-1)_第3頁
第3頁 / 共4頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《142《全稱量詞與存在量詞(二)量詞否定》教案(新人教選修2-1選修1-1)》由會員分享,可在線閱讀,更多相關(guān)《142《全稱量詞與存在量詞(二)量詞否定》教案(新人教選修2-1選修1-1)(4頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、1.4.2全稱量詞與存在量詞(二)量詞否定教學(xué)目標(biāo):利用日常生活中的例子和數(shù)學(xué)的命題介紹對量詞命題的否定,使學(xué)生進(jìn)一步理解全稱量詞、存在量詞的作用.教學(xué)重點(diǎn):全稱量詞與存在量詞命題間的轉(zhuǎn)化;教學(xué)難點(diǎn):隱蔽性否定命題的確定;課 型:新授課教學(xué)手段:多媒體教學(xué)過程:一、創(chuàng)設(shè)情境數(shù)學(xué)命題中出現(xiàn)“全部”、“所有”、“一切”、“任何”、“任意”、“每一個(gè)”等與“存在著”、“有”、“有些”、“某個(gè)”、“至少有一個(gè)”等的詞語,在邏輯中分別稱為全稱量詞與存在性量詞(用符號分別記為“ ”與“”來表示);由這樣的量詞構(gòu)成的命題分別稱為全稱命題與存在性命題。在全稱命題與存在性命題的邏輯關(guān)系中,都容易判斷,但它們的否

2、定形式是我們困惑的癥結(jié)所在。二、活動嘗試問題1:指出下列命題的形式,寫出下列命題的否定。(1)所有的矩形都是平行四邊形; (2)每一個(gè)素?cái)?shù)都是奇數(shù);(3)xR,x2-2x+10分析:(1),否定:存在一個(gè)矩形不是平行四邊形;(2),否定:存在一個(gè)素?cái)?shù)不是奇數(shù);(3),否定:$xR,x2-2x+10;(2)任何三角形都不是等邊三角形;(3)任何函數(shù)都有反函數(shù);(4)對于所有的四邊形,它的對角線不可能互相垂直或平分;從集合的運(yùn)算觀點(diǎn)剖析:,四、數(shù)學(xué)理論1.全稱命題、存在性命題的否定一般地,全稱命題P: xM,有P(x)成立;其否定命題P為:$xM,使P(x)不成立。存在性命題P:$xM,使P(x)

3、成立;其否定命題P為: xM,有P(x)不成立。用符號語言表示:P:M, p(x)否定為 P: $M, P(x)P:$M, p(x)否定為 P: M, P(x)在具體操作中就是從命題P把全稱性的量詞改成存在性的量詞,存在性的量詞改成全稱性的量詞,并把量詞作用范圍進(jìn)行否定。即須遵循下面法則:否定全稱得存在,否定存在得全稱,否定肯定得否定,否定否定得肯定.2.關(guān)鍵量詞的否定詞語是一定是都是大于小于且詞語的否定不是一定不是不都是小于或等于大于或等于或詞語必有一個(gè)至少有n個(gè)至多有一個(gè)所有x成立所有x不成立詞語的否定一個(gè)也沒有至多有n-1個(gè)至少有兩個(gè)存在一個(gè)x不成立存在有一個(gè)成立五、鞏固運(yùn)用例1 寫出下

4、列全稱命題的否定:(1)p:所有人都晨練;(2)p:xR,x2x+10;(3)p:平行四邊形的對邊相等;(4)p:$ xR,x2x+10;分析:(1) P:有的人不晨練;(2)$ xR,x2x+10;(3)存在平行四邊形,它的的對邊不相等;(4)xR,x2x+10;例2 寫出下列命題的否定。(1) 所有自然數(shù)的平方是正數(shù)。 (2) 任何實(shí)數(shù)x都是方程5x-12=0的根。 (3) 對任意實(shí)數(shù)x,存在實(shí)數(shù)y,使x+y0. (4) 有些質(zhì)數(shù)是奇數(shù)。 解:(1)的否定:有些自然數(shù)的平方不是正數(shù)。 (2)的否定:存在實(shí)數(shù)x不是方程5x-12=0的根。 (3)的否定:存在實(shí)數(shù)x,對所有實(shí)數(shù)y,有x+y0。

5、 (4)的否定:所有的質(zhì)數(shù)都不是奇數(shù)。 解題中會遇到省略了“所有,任何,任意”等量詞的簡化形式,如“若x3,則x29”。在求解中極易誤當(dāng)為簡單命題處理;這種情形下時(shí)應(yīng)先將命題寫成完整形式,再依據(jù)法則來寫出其否定形式。 例3 寫出下列命題的否定。 (1) 若x24 則x2.。 (2) 若m0,則x2+x-m=0有實(shí)數(shù)根。 (3) 可以被5整除的整數(shù),末位是0。 (4) 被8整除的數(shù)能被4整除。 (5) 若一個(gè)四邊形是正方形,則它的四條邊相等。 解(1)否定:存在實(shí)數(shù),雖然滿足4,但2。或者說:存在小于或等于2的數(shù),滿足4。(完整表達(dá)為對任意的實(shí)數(shù)x, 若x24 則x2)(2)否定:雖然實(shí)數(shù)m0,

6、但存在一個(gè),使+ -m=0無實(shí)數(shù)根。(原意表達(dá):對任意實(shí)數(shù)m,若m0,則x2+x-m=0有實(shí)數(shù)根。)(3)否定:存在一個(gè)可以被5整除的整數(shù),其末位不是0。(4)否定:存在一個(gè)數(shù)能被8整除,但不能被4整除.(原意表達(dá)為所有能被8整除的數(shù)都能被4整除)(5)否定:存在一個(gè)四邊形,雖然它是正方形,但四條邊中至少有兩條不相等。(原意表達(dá)為無論哪個(gè)四邊形,若它是正方形,則它的四條邊中任何兩條都相等。)例4 寫出下列命題的非命題與否命題,并判斷其真假性。(1)p:若xy,則5x5y;(2)p:若x2+x2,則x2-x2;(3)p:正方形的四條邊相等;(4)p:已知a,b為實(shí)數(shù),若x2+ax+b0有非空實(shí)解

7、集,則a2-4b0。解:(1) P:若 xy,則5x5y; 假命題 否命題:若xy,則5x5y;真命題(2) P:若x2+x2,則x2-x2;真命題 否命題:若x2+x2,則x2-x2);假命題。 (3) P:存在一個(gè)四邊形,盡管它是正方形,然而四條邊中至少有兩條邊不相等;假命題。 否命題:若一個(gè)四邊形不是正方形,則它的四條邊不相等。假命題。(4) P:存在兩個(gè)實(shí)數(shù)a,b,雖然滿足x2+ax+b0有非空實(shí)解集,但使a2-4b0。假命題。 否命題:已知a,b為實(shí)數(shù),若x2+ax+b0沒有非空實(shí)解集,則a2-4b0。真命題。評注:命題的否定與否命題是完全不同的概念。其理由:1任何命題均有否定,無論

8、是真命題還是假命題;而否命題僅針對命題“若P則q”提出來的。2命題的否定(非)是原命題的矛盾命題,兩者的真假性必然是一真一假,一假一真;而否命題與原命題可能是同真同假,也可能是一真一假。3 原命題“若P則q” 的形式,它的非命題“若p,則q”;而它的否命題為 “若p,則q”,既否定條件又否定結(jié)論。六、回顧反思在教學(xué)中,務(wù)必理清各類型命題形式結(jié)構(gòu)、性質(zhì)關(guān)系,才能真正準(zhǔn)確地完整地表達(dá)出命題的否定,才能避犯邏輯性錯誤,才能更好把邏輯知識負(fù)載于其它知識之上,達(dá)到培養(yǎng)和發(fā)展學(xué)生的邏輯思維能力。七、課后練習(xí)1命題p:存在實(shí)數(shù)m,使方程x2mx10有實(shí)數(shù)根,則“非p”形式的命題是( )A.存在實(shí)數(shù)m,使得方

9、程x2mx10無實(shí)根;B.不存在實(shí)數(shù)m,使得方程x2mx10有實(shí)根;C.對任意的實(shí)數(shù)m,使得方程x2mx10有實(shí)根;D.至多有一個(gè)實(shí)數(shù)m,使得方程x2mx10有實(shí)根;2有這樣一段演繹推理是這樣的“有些有理數(shù)是分?jǐn)?shù),整數(shù)是有理數(shù),則整數(shù)是分?jǐn)?shù)”結(jié)論顯然是錯誤的,是因?yàn)椋?)A大前提錯誤 B小前提錯誤 C推理形式錯誤 D非以上錯誤3命題“xR,x2-x+30”的否定是 4“末位數(shù)字是0或5的整數(shù)能被5整除”的否定形式是 否命題是 5寫出下列命題的否定,并判斷其真假:(1)p:mR,方程x2+x-m=0必有實(shí)根; (2)q:$R,使得x2+x+10; 6寫出下列命題的“非P”命題,并判斷其真假:(1

10、)若m1,則方程x2-2x+m=0有實(shí)數(shù)根(2)平方和為0的兩個(gè)實(shí)數(shù)都為0(3)若是銳角三角形, 則的任何一個(gè)內(nèi)角是銳角(4)若abc=0,則a,b,c中至少有一為0(5)若(x-1)(x-2)=0 ,則x1,x2八、參考答案:1 B2C3$ xR,x2-x+304否定形式:末位數(shù)是0或5的整數(shù),不能被5整除 否命題:末位數(shù)不是0且不是5的整數(shù),不能被5整除5(1)p:$mR,方程x2+x-m=0無實(shí)根;真命題。(2)q:R,使得x2+x+10;真命題。6 若m1,則方程x2-2x+m=0無實(shí)數(shù)根,(真);平方和為0的兩個(gè)實(shí)數(shù)不都為0(假);若是銳角三角形, 則的任何一個(gè)內(nèi)角不都是銳角(假);若abc=0,則a,b,c中沒有一個(gè)為0(假);若(x-1)(x-2)=0,則 或,(真)

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!