2019高考數(shù)學(xué)一本策略復(fù)習(xí) 專題七 系列4選講 第一講 坐標(biāo)系與參數(shù)方程教案 文.docx
《2019高考數(shù)學(xué)一本策略復(fù)習(xí) 專題七 系列4選講 第一講 坐標(biāo)系與參數(shù)方程教案 文.docx》由會員分享,可在線閱讀,更多相關(guān)《2019高考數(shù)學(xué)一本策略復(fù)習(xí) 專題七 系列4選講 第一講 坐標(biāo)系與參數(shù)方程教案 文.docx(11頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
第一講坐標(biāo)系與參數(shù)方程年份卷別考查內(nèi)容及考題位置命題分析2018卷極坐標(biāo)方程與直角坐標(biāo)方程的互化、直線和圓的位置關(guān)系T221.坐標(biāo)系與參數(shù)方程是高考的選考內(nèi)容之一,高考考查的重點(diǎn)主要有兩個(gè)方面:一是簡單曲線的極坐標(biāo)方程;二是參數(shù)方程、極坐標(biāo)方程與曲線的綜合應(yīng)用2.全國課標(biāo)卷對此部分內(nèi)容的考查以解答題形式出現(xiàn),難度中等,備考此部分內(nèi)容時(shí)應(yīng)注意轉(zhuǎn)化思想的應(yīng)用.卷曲線的參數(shù)方程與直角坐標(biāo)方程的互化、直線參數(shù)方程的幾何意義T22卷參數(shù)方程與直角坐標(biāo)方程的互化T222017卷參數(shù)方程與普通方程的互化、點(diǎn)到直線的距離T22卷直角坐標(biāo)與極坐標(biāo)的互化、動點(diǎn)軌跡方程的求法、三角形面積的最值問題T22卷直線的參數(shù)方程與極坐標(biāo)方程、動點(diǎn)軌跡方程的求法T222016卷參數(shù)方程與普通方程的互化、極坐標(biāo)方程與直角坐標(biāo)方程的互化及應(yīng)用T23卷極坐標(biāo)方程與直角坐標(biāo)方程的互化及應(yīng)用、直線與圓的位置關(guān)系T23卷參數(shù)方程、極坐標(biāo)方程及點(diǎn)到直線的距離、三角函數(shù)的最值T23極坐標(biāo)方程及應(yīng)用授課提示:對應(yīng)學(xué)生用書第67頁悟通方法結(jié)論1圓的極坐標(biāo)方程若圓心為M(0,0),半徑為r,則圓的方程為:220cos(0)r20.幾個(gè)特殊位置的圓的極坐標(biāo)方程:(1)當(dāng)圓心位于極點(diǎn),半徑為r:r;(2)當(dāng)圓心位于M(a,0),半徑為a:2acos ;(3)當(dāng)圓心位于M,半徑為a:2asin .2直線的極坐標(biāo)方程若直線過點(diǎn)M(0,0),且極軸與此直線所成的角為,則它的方程為:sin()0sin(0)幾個(gè)特殊位置的直線的極坐標(biāo)方程:(1)直線過極點(diǎn):0和0;(2)直線過點(diǎn)M(a,0)且垂直于極軸:cos a;(3)直線過M且平行于極軸:sin b.全練快速解答1(2018高考全國卷)在直角坐標(biāo)系xOy中,曲線C1的方程為yk|x|2.以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為22cos 30.(1)求C2的直角坐標(biāo)方程;(2)若C1與C2有且僅有三個(gè)公共點(diǎn),求C1的方程解析:(1)由xcos ,ysin 得C2的直角坐標(biāo)方程為(x1)2y24.(2)由(1)知C2是圓心為A(1,0),半徑為2的圓由題設(shè)知,C1是過點(diǎn)B(0,2)且關(guān)于y軸對稱的兩條射線記y軸右邊的射線為l1,y軸左邊的射線為l2.由于點(diǎn)B在圓C2的外面,故C1與C2有且僅有三個(gè)公共點(diǎn)等價(jià)于l1與C2只有一個(gè)公共點(diǎn)且l2與C2有兩個(gè)公共點(diǎn),或l2與C2只有一個(gè)公共點(diǎn)且l1與C2有兩個(gè)公共點(diǎn)當(dāng)l1與C2只有一個(gè)公共點(diǎn)時(shí),點(diǎn)A到l1所在直線的距離為2,所以2,故k或k0.經(jīng)檢驗(yàn),當(dāng)k0時(shí),l1與C2沒有公共點(diǎn);當(dāng)k時(shí),l1與C2只有一個(gè)公共點(diǎn),l2與C2有兩個(gè)公共點(diǎn)當(dāng)l2與C2只有一個(gè)公共點(diǎn)時(shí),點(diǎn)A到l2所在直線的距離為2,所以2,故k0或k.經(jīng)檢驗(yàn),當(dāng)k0時(shí),l1與C2沒有公共點(diǎn);當(dāng)k時(shí),l2與C2沒有公共點(diǎn)綜上,所求C1的方程為y|x|2.2(2017高考全國卷)在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為cos 4.(1)M為曲線C1上的動點(diǎn),點(diǎn)P在線段OM上,且滿足|OM|OP|16,求點(diǎn)P的軌跡C2的直角坐標(biāo)方程;(2)設(shè)點(diǎn)A的極坐標(biāo)為,點(diǎn)B在曲線C2上,求OAB面積的最大值解析:(1)設(shè)P的極坐標(biāo)為(,)(0),M的極坐標(biāo)為(1,)(10)由題設(shè)知|OP|,|OM|1.由|OM|OP|16得C2的極坐標(biāo)方程4cos (0)因此C2的直角坐標(biāo)方程為(x2)2y24(x0)(2)設(shè)點(diǎn)B的極坐標(biāo)為(B,)(B0),由題設(shè)知|OA|2,B4cos ,于是OAB面積S|OA|BsinAOB4cos |sin|2|sin|2.當(dāng)時(shí),S取得最大值2.所以O(shè)AB面積的最大值為2.3(2018長春二模)在直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為cos1,M,N分別為曲線C與x軸,y軸的交點(diǎn)(1)寫出曲線C的直角坐標(biāo)方程,并求M,N的極坐標(biāo);(2)設(shè)M,N的中點(diǎn)為P,求直線OP的極坐標(biāo)方程解析:(1)cos1,cos cos sin sin1.又xy1,即曲線C的直角坐標(biāo)方程為xy20,令y0,則x2;令x0,則y.M(2,0),N.M的極坐標(biāo)為(2,0),N的極坐標(biāo)為.(2)M,N連線的中點(diǎn)P的直角坐標(biāo)為,P的極角為,直線OP的極坐標(biāo)方程為(R)【類題通法】1極坐標(biāo)方程與普通方程互化技巧(1)巧用極坐標(biāo)方程兩邊同乘以或同時(shí)平方技巧,將極坐標(biāo)方程構(gòu)造成含有cos ,sin ,2的形式,然后利用公式代入化簡得到普通方程(2)巧借兩角和差公式,轉(zhuǎn)化sin()或cos()的結(jié)構(gòu)形式,進(jìn)而利用互化公式得到普通方程(3)將直角坐標(biāo)方程中的x轉(zhuǎn)化為cos ,將y換成sin ,即可得到其極坐標(biāo)方程2求解與極坐標(biāo)有關(guān)的問題的主要方法(1)直接利用極坐標(biāo)系求解,可與數(shù)形結(jié)合思想配合使用(2)轉(zhuǎn)化為直角坐標(biāo)系,用直角坐標(biāo)求解若結(jié)果要求的是極坐標(biāo),還應(yīng)將直角坐標(biāo)化為極坐標(biāo)參數(shù)方程授課提示:對應(yīng)學(xué)生用書第68頁悟通方法結(jié)論幾種常見曲線的參數(shù)方程(1)圓以O(shè)(a,b)為圓心,r為半徑的圓的參數(shù)方程是其中是參數(shù)當(dāng)圓心在(0,0)時(shí),方程為其中是參數(shù)(2)橢圓橢圓1(ab0)的參數(shù)方程是其中是參數(shù)橢圓1(ab0)的參數(shù)方程是其中是參數(shù)(3)直線經(jīng)過點(diǎn)P0(x0,y0),傾斜角為的直線的參數(shù)方程是其中t是參數(shù)全練快速解答1(2018高考全國卷)在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(為參數(shù)),直線l的參數(shù)方程為(t為參數(shù))(1)求C和l的直角坐標(biāo)方程;(2)若曲線C截直線l所得線段的中點(diǎn)坐標(biāo)為(1,2),求l的斜率解析:(1)曲線C的直角坐標(biāo)方程為1.當(dāng)cos 0時(shí),l的直角坐標(biāo)方程為ytan x2tan ,當(dāng)cos 0時(shí),l的直角坐標(biāo)方程為x1.(2)將l的參數(shù)方程代入C的直角坐標(biāo)方程,整理得關(guān)于t的方程(13cos2)t24(2cos sin )t80.因?yàn)榍€C截直線l所得線段的中點(diǎn)(1,2)在C內(nèi),所以有兩個(gè)解,設(shè)為t1,t2,則t1t20.又由得t1t2,故2cos sin 0,于是直線l的斜率ktan 2.2(2017高考全國卷)在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(為參數(shù)),直線l的參數(shù)方程為(t為參數(shù))(1)若a1,求C與l的交點(diǎn)坐標(biāo);(2)若C上的點(diǎn)到l距離的最大值為,求a.解析:(1)曲線C的普通方程為y21.當(dāng)a1時(shí),直線l的普通方程為x4y30.由解得或從而C與l的交點(diǎn)坐標(biāo)為(3,0),.(2)直線l的普通方程為x4ya40,故C上的點(diǎn)(3cos ,sin )到l的距離為d.當(dāng)a4時(shí),d的最大值為.由題設(shè)得,解得a8;當(dāng)a4時(shí),d的最大值為.由題設(shè)得,解得a16.綜上,a8或a16.3(2018惠州模擬)已知曲線C的極坐標(biāo)方程是4cos .以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,直線l的參數(shù)方程是(t為參數(shù))(1)將曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程;(2)若直線l與曲線C相交于A,B兩點(diǎn),且|AB|,求直線l的傾斜角的值解析:(1)由4cos 得24cos .x2y22,xcos ,ysin ,曲線C的直角坐標(biāo)方程為x2y24x0,即(x2)2y24.(2)將代入曲線C的方程得(tcos 1)2(tsin )24,化簡得t22tcos 30.設(shè)A,B兩點(diǎn)對應(yīng)的參數(shù)分別為t1,t2,則.|AB|t1t2|,4cos22,cos ,或.【類題通法】1.有關(guān)參數(shù)方程問題的2個(gè)關(guān)鍵點(diǎn)(1)參數(shù)方程化為普通方程的關(guān)鍵是消參數(shù),要根據(jù)參數(shù)的特點(diǎn)進(jìn)行轉(zhuǎn)化(2)利用參數(shù)方程解決問題,關(guān)鍵是選準(zhǔn)參數(shù),理解參數(shù)的幾何意義2利用直線的參數(shù)方程中參數(shù)的幾何意義求解問題經(jīng)過點(diǎn)P(x0,y0),傾斜角為的直線l的參數(shù)方程為(t為參數(shù))若A,B為直線l上兩點(diǎn),其對應(yīng)的參數(shù)分別為t1,t2,線段AB的中點(diǎn)為M,點(diǎn)M所對應(yīng)的參數(shù)為t0,則以下結(jié)論在解題中經(jīng)常用到:(1)t0;(2)|PM|t0|;(3)|AB|t2t1|;(4)|PA|PB|t1t2|.極坐標(biāo)方程與參數(shù)方程的綜合應(yīng)用授課提示:對應(yīng)學(xué)生用書第69頁(2017高考全國卷)(10分)在直角坐標(biāo)系xOy中,直線l1的參數(shù)方程為(t為參數(shù)),直線l2的參數(shù)方程為(m為參數(shù))設(shè)l1與l2的交點(diǎn)為P,當(dāng)k變化時(shí),P的軌跡為曲線C.(1)寫出C的普通方程;(2)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,設(shè)l3:(cos sin )0,M為l3與C的交點(diǎn),求M的極徑規(guī)范解答(1)消去參數(shù)t得l1的普通方程l1:yk(x2);消去參數(shù)m得l2的普通方程l2:y(x2) (2分)設(shè)P(x,y),由題設(shè)得消去k得x2y24(y0)所以C的普通方程為x2y24(y0) (4分)(2)C的極坐標(biāo)方程為2(cos2sin2)4(02,)聯(lián)立 (6分)得cos sin 2(cos sin )故tan ,從而cos2,sin2. (8分)代入2(cos2sin2)4得25,所以交點(diǎn)M的極徑為. (10分)【類題通法】解決極坐標(biāo)方程與參數(shù)方程綜合問題的方法(1)對于參數(shù)方程或極坐標(biāo)方程應(yīng)用不夠熟練的情況下,我們可以先化成直角坐標(biāo)的普通方程,這樣思路可能更加清晰(2)對于一些運(yùn)算比較復(fù)雜的問題,用參數(shù)方程計(jì)算會比較簡捷(3)利用極坐標(biāo)方程解決問題時(shí),要注意題目所給的限制條件及隱含條件練通即學(xué)即用1(2018惠州模擬)已知曲線C:(為參數(shù))和定點(diǎn)A(0,),F(xiàn)1,F(xiàn)2是此曲線的左、右焦點(diǎn),以原點(diǎn)O為極點(diǎn),以x軸的正半軸為極軸建立極坐標(biāo)系(1)求直線AF2的極坐標(biāo)方程;(2)經(jīng)過點(diǎn)F1且與直線AF2垂直的直線l交曲線C于M,N兩點(diǎn),求|MF1|NF1|的值解析:(1)曲線C:可化為1,故曲線C為橢圓,則焦點(diǎn)F1(1,0),F(xiàn)2(1,0)所以經(jīng)過點(diǎn)A(0,)和F2(1,0)的直線AF2的方程為x1,即xy0,所以直線AF2的極坐標(biāo)方程為cos sin .(2)由(1)知,直線AF2的斜率為,因?yàn)閘AF2,所以直線l的斜率為,即傾斜角為30,所以直線l的參數(shù)方程為(t為參數(shù)),代入橢圓C的方程中,得13t212t360.因?yàn)辄c(diǎn)M,N在點(diǎn)F1的兩側(cè),所以|MF1|NF1|t1t2|.2(2018長郡中學(xué)模擬)在直角坐標(biāo)系中,已知曲線M的參數(shù)方程為(為參數(shù)),在極坐標(biāo)系中,直線l1的方程為1,直線l2的方程為2.(1)寫出曲線M的普通方程,并指出它是什么曲線;(2)設(shè)l1與曲線M交于A,C兩點(diǎn),l2與曲線M交于B,D兩點(diǎn),求四邊形ABCD面積的取值范圍解析:(1)由(為參數(shù)),消去參數(shù),得曲線M的普通方程為(x1)2(y1)28,曲線M是以(1,1)為圓心,2為半徑的圓(2)設(shè)|OA|1,|OC|2,O,A,C三點(diǎn)共線,則|AC|12|(*),將曲線M的方程化成極坐標(biāo)方程,得22(sin cos )60,代入(*)式得|AC|.用代替,得|BD|,又l1l2,S四邊形ABCD|AC|BD|,S四邊形ABCD2,sin220,1,S四邊形ABCD8,14.授課提示:對應(yīng)學(xué)生用書第143頁1已知曲線C1的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為4sin(),直線l的直角坐標(biāo)方程為yx.(1)求曲線C1和直線l的極坐標(biāo)方程;(2)已知直線l分別與曲線C1、曲線C2相交于異于極點(diǎn)的A,B兩點(diǎn),若A,B的極徑分別為1,2,求|21|的值解析:(1)曲線C1的參數(shù)方程為(為參數(shù)),其普通方程為x2(y1)21,極坐標(biāo)方程為2sin .直線l的直角坐標(biāo)方程為yx,故直線l的極坐標(biāo)方程為(R)(2)曲線C1的極坐標(biāo)方程為2sin ,直線l的極坐標(biāo)方程為,將代入C1的極坐標(biāo)方程得11,將代入C2的極坐標(biāo)方程得24,|21|3.2(2018開封模擬)在直角坐標(biāo)系xOy中,直線C1的參數(shù)方程為(t為參數(shù)),圓C2:(x2)2y24,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系(1)求C1,C2的極坐標(biāo)方程和交點(diǎn)A的坐標(biāo)(非坐標(biāo)原點(diǎn));(2)若直線C3的極坐標(biāo)方程為(R),設(shè)C2與C3的交點(diǎn)為B(非坐標(biāo)原點(diǎn)),求OAB的最大面積解析:(1)由(t為參數(shù))得曲線C1的普通方程為yxtan ,故曲線C1的極坐標(biāo)方程為(R)將xcos ,ysin 代入(x2)2y24,得C2的極坐標(biāo)方程為4cos .故交點(diǎn)A的坐標(biāo)為(4cos ,)(2)由題意知,B的極坐標(biāo)為(2,)SOAB|24cos sin()|2sin(2)2|,故OAB的最大面積是22.3(2018長春模擬)以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知點(diǎn)P的直角坐標(biāo)為(1,2),點(diǎn)C的極坐標(biāo)為(3,),若直線l過點(diǎn)P,且傾斜角為,圓C以點(diǎn)C為圓心,3為半徑(1)求直線l的參數(shù)方程和圓C的極坐標(biāo)方程;(2)設(shè)直線l與圓C相交于A,B兩點(diǎn),求|PA|PB|.解析:(1)由題意得直線l的參數(shù)方程為(t為參數(shù)),圓C的極坐標(biāo)方程為6sin .(2)由(1)易知圓C的直角坐標(biāo)方程為x2(y3)29,把代入x2(y3)29,得t2(1)t70,設(shè)點(diǎn)A,B對應(yīng)的參數(shù)分別為t1,t2,t1t27,又|PA|t1|,|PB|t2|,|PA|PB|7.4(2018唐山模擬)極坐標(biāo)系的極點(diǎn)為直角坐標(biāo)系xOy的原點(diǎn),極軸為x軸的正半軸,兩種坐標(biāo)系的長度單位相同已知圓C1的極坐標(biāo)方程為4(cos sin ),P是C1上一動點(diǎn),點(diǎn)Q在射線OP上且滿足|OQ|OP|,點(diǎn)Q的軌跡為C2.(1)求曲線C2的極坐標(biāo)方程,并化為直角坐標(biāo)方程;(2)已知直線l的參數(shù)方程為(t為參數(shù),0),l與曲線C2有且只有一個(gè)公共點(diǎn),求的值解析:(1)設(shè)點(diǎn)P,Q的極坐標(biāo)分別為(0,),(,),則04(cos sin )2(cos sin ),點(diǎn)Q的軌跡C2的極坐標(biāo)方程為2(cos sin ),兩邊同乘以,得22(cos sin ),C2的直角坐標(biāo)方程為x2y22x2y,即(x1)2(y1)22.(2)將l的參數(shù)方程代入曲線C2的直角坐標(biāo)方程,得(tcos 1)2(tsin 1)22,即t22(cos sin )t0,t10,t22(sin cos ),由直線l與曲線C2有且只有一個(gè)公共點(diǎn),得sin cos 0,因?yàn)?,所以.- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019高考數(shù)學(xué)一本策略復(fù)習(xí) 專題七 系列4選講 第一講 坐標(biāo)系與參數(shù)方程教案 2019 高考 數(shù)學(xué) 策略 復(fù)習(xí) 專題 系列 第一 坐標(biāo)系 參數(shù) 方程 教案
鏈接地址:http://italysoccerbets.com/p-6309454.html