2019-2020年蘇教版高中數(shù)學(xué)(選修2-1)3.1《空間向量及其運算》word教案3篇.doc
《2019-2020年蘇教版高中數(shù)學(xué)(選修2-1)3.1《空間向量及其運算》word教案3篇.doc》由會員分享,可在線閱讀,更多相關(guān)《2019-2020年蘇教版高中數(shù)學(xué)(選修2-1)3.1《空間向量及其運算》word教案3篇.doc(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年蘇教版高中數(shù)學(xué)(選修2-1)3.1空間向量及其運算word教案3篇教學(xué)目標(biāo):知識目標(biāo):空間向量;相等的向量;空間向量的加減與數(shù)乘運算及運算律;能力目標(biāo):理解空間向量的概念,掌握其表示方法會用圖形說明空間向量加法、減法、數(shù)乘向量及它們的運算律;能用空間向量的運算意義及運算律解決簡單的立體幾何中的問題德育目標(biāo):學(xué)會用發(fā)展的眼光看問題,認識到事物都是在不斷的發(fā)展、進化的,會用聯(lián)系的觀點看待事物教學(xué)重點:空間向量的加減與數(shù)乘運算及運算律教學(xué)難點:應(yīng)用向量解決立體幾何問題教學(xué)方法:討論式教學(xué)過程: .復(fù)習(xí)引入師在必修四第二章平面向量中,我們學(xué)習(xí)了有關(guān)平面向量的一些知識,什么叫做向量?向量是怎樣表示的呢?生既有大小又有方向的量叫向量向量的表示方法有:用有向線段表示;用字母a、b等表示;用有向線段的起點與終點字母:師數(shù)學(xué)上所說的向量是自由向量,也就是說在保持向量的方向、大小的前提下可以將向量進行平移,由此我們可以得出向量相等的概念,請同學(xué)們回憶一下生長度相等且方向相同的向量叫相等向量.師學(xué)習(xí)了向量的有關(guān)概念以后,我們學(xué)習(xí)了向量的加減以及數(shù)乘向量運算:向量的加法:向量的減法:實數(shù)與向量的積:實數(shù)與向量a的積是一個向量,記作a,其長度和方向規(guī)定如下:(1)|a|a|(2)當(dāng)0時,a與a同向; 當(dāng)0時,a與a反向; 當(dāng)0時,a0.師關(guān)于向量的以上幾種運算,請同學(xué)們回憶一下,有哪些運算律呢?生向量加法和數(shù)乘向量滿足以下運算律加法交換律:abba加法結(jié)合律:(ab)ca(bc)數(shù)乘分配律:(ab)ab師今天我們將在必修四第二章平面向量的基礎(chǔ)上,類比地引入空間向量的概念、表示方法、相同或向等關(guān)系、空間向量的加法、減法、數(shù)乘以及這三種運算的運算率,并進行一些簡單的應(yīng)用請同學(xué)們閱讀課本P26P27.新課講授師如同平面向量的概念,我們把空間中具有大小和方向的量叫做向量例如空間的一個平移就是一個向量那么我們怎樣表示空間向量呢?相等的向量又是怎樣表示的呢?生與平面向量一樣,空間向量也用有向線段表示,并且同向且等長的有向線段表示同一向量或相等的向量師由以上知識可知,向量在空間中是可以平移的空間任意兩個向量都可以用同一平面內(nèi)的兩條有向線段表示因此我們說空間任意兩個向量是共面的師空間向量的加法、減法、數(shù)乘向量各是怎樣定義的呢?生空間向量的加法、減法、數(shù)乘向量的定義與平面向量的運算一樣:=a+b,(指向被減向量),a 師空間向量的加法與數(shù)乘向量有哪些運算律呢?請大家驗證這些運算律生空間向量加法與數(shù)乘向量有如下運算律:加法交換律:a + b = b + a;加法結(jié)合律:(a + b) + c =a + (b + c);(課件驗證)數(shù)乘分配律:(a + b) =a +b師空間向量加法的運算律要注意以下幾點:首尾相接的若干向量之和,等于由起始向量的起點指向末尾向量的終點的向量即:因此,求空間若干向量之和時,可通過平移使它們轉(zhuǎn)化為首尾相接的向量首尾相接的若干向量若構(gòu)成一個封閉圖形,則它們的和為零向量即:兩個向量相加的平行四邊形法則在空間仍然成立因此,求始點相同的兩個向量之和時,可以考慮用平行四邊形法則例已知平行六面體(如圖),化簡下列向量表達式,并標(biāo)出化簡結(jié)果的向量:說明:平行四邊形ABCD平移向量 a 到ABCD的軌跡所形成的幾何體,叫做平行六面體記作ABCDABCD平行六面體的六個面都是平行四邊形,每個面的邊叫做平行六面體的棱解:(見課本P27)說明:由第2小題可知,始點相同且不在同一個平面內(nèi)的三個向量之和,等于以這三個向量為棱的平行六面體的以公共始點為始點的對角線所表示的向量,這是平面向量加法的平行四邊形法則向空間的推廣.課堂練習(xí)課本P92練習(xí).課時小結(jié)平面向量僅限于研究平面圖形在它所在的平面內(nèi)的平移,而空間向量研究的是空間的平移,它們的共同點都是指“將圖形上所有點沿相同的方向移動相同的長度”,空間的平移包含平面的平移關(guān)于向量算式的化簡,要注意解題格式、步驟和方法.課后作業(yè)課本P106 1、2、預(yù)習(xí)課本P92P96,預(yù)習(xí)提綱: 怎樣的向量叫做共線向量?兩個向量共線的充要條件是什么?空間中點在直線上的充要條件是什么?什么叫做空間直線的向量參數(shù)表示式?怎樣的向量叫做共面向量?向量p與不共線向量a、b共面的充要條件是什么?空間一點P在平面MAB內(nèi)的充要條件是什么?板書設(shè)計:3.1 空間向量及其運算(一)一、 平面向量復(fù)習(xí) 二、空間向量 三、例1定義及表示方法 定義及表示加減與數(shù)乘運算 加減與數(shù)乘向量 小結(jié)運算律 運算律教學(xué)后記:空間向量及其運算一、課題:空間向量及其運算(2) 二、教學(xué)目標(biāo):1理解共線向量定理和共面向量定理及它們的推論;2掌握空間直線、空間平面的向量參數(shù)方程和線段中點的向量公三、教學(xué)重、難點:共線、共面定理及其應(yīng)用四、教學(xué)過程:(一)復(fù)習(xí):1空間向量的概念及表示;(二)新課講解:1共線(平行)向量:如果表示空間向量的有向線段所在的直線互相平行或重合,則這些向量叫做共線向量或平行向量。讀作:平行于,記作:2共線向量定理:對空間任意兩個向量的充要條件是存在實數(shù),使(唯一)推論:如果為經(jīng)過已知點,且平行于已知向量的直線,那么對任一點,點在直線上的充要條件是存在實數(shù),滿足等式,其中向量叫做直線的方向向量。在上取,則式可化為或當(dāng)時,點是線段的中點,此時和都叫空間直線的向量參數(shù)方程,是線段的中點公式3向量與平面平行:已知平面和向量,作,如果直線平行于或在內(nèi),那么我們說向量平行于平面,記作:通常我們把平行于同一平面的向量,叫做共面向量說明:空間任意的兩向量都是共面的4共面向量定理:如果兩個向量不共線,與向量共面的充要條件是存在實數(shù)使推論:空間一點位于平面內(nèi)的充分必要條件是存在有序?qū)崝?shù)對,使或?qū)臻g任一點,有上面式叫做平面的向量表達式(三)例題分析:例1已知三點不共線,對平面外任一點,滿足條件,試判斷:點與是否一定共面?解:由題意:,即,所以,點與共面說明:在用共面向量定理及其推論的充要條件進行向量共面判斷的時候,首先要選擇恰當(dāng)?shù)某湟獥l件形式,然后對照形式將已知條件進行轉(zhuǎn)化運算【練習(xí)】:對空間任一點和不共線的三點,問滿足向量式 (其中)的四點是否共面?解:,點與點共面例2已知,從平面外一點引向量,(1)求證:四點共面;(2)平面平面解:(1)四邊形是平行四邊形,共面;(2),又,所以,平面平面五、課堂練習(xí):課本第96頁練習(xí)第1、2、3題六、課堂小結(jié):1共線向量定理和共面向量定理及其推論;2空間直線、平面的向量參數(shù)方程和線段中點向量公式七、作業(yè):1已知兩個非零向量不共線,如果,求證:共面2已知,若,求實數(shù)的值。3如圖,分別為正方體的棱的中點,求證:(1)四點共面;(2)平面平面4已知分別是空間四邊形邊的中點,(1)用向量法證明:四點共面;(2)用向量法證明:平面從三個方面談空間向量立體幾何引入空間向量使得幾何問題代數(shù)化,很多復(fù)雜的幾何問題得以迎刃而解但不少學(xué)生對空間向量的學(xué)習(xí)把握不準確,不知道要掌握到什么程度,拓寬到什么程度本文從“轉(zhuǎn)、基、法”三方面談空間向量必須掌握之處,供參閱一、“轉(zhuǎn)”“轉(zhuǎn)”即轉(zhuǎn)化,即向量之間的相互表示;難點在于怎樣有效地用已知向量來表示未知向量正如三角函數(shù)求值中角的相互“轉(zhuǎn)化”,怎樣用已知角來代換未知角難點突破:尋找已知向量來表示所要求的向量往往立竿見影或者利用分析法,根據(jù)所要求證的向量來表示要轉(zhuǎn)化的向量例1如圖1,在空間四邊形ABCD中,如果,求證:證明:由,得,即,取CD的中點E,連結(jié)AE和BE,則上式化為,得,即所以評注:要得到,需從條件中構(gòu)造,解答中的移項使得構(gòu)造得以實現(xiàn)二、“基”“基”即基底,由空間向量基本定理,可知空間任一向量可由不共面的三個向量來表示用基底的眼光看問題會使得空間向量的表示簡潔明朗化例2已知正四面體,、分別為、的中點,求與所成角的余弦值解:設(shè)正四面體的棱長為1,如圖2設(shè),則,OE與BF所成的角的余弦值為評注:基底的取法還有很多,以,三向量為基底來表示其它向量,可使問題輕松獲解三、“法”法向量求法:設(shè),找平面內(nèi)兩相交向量a、b,再作,得兩方程,三個未知量兩個方程,一般通過取定z的值來定法向量,方向朝上,方向朝下法向量的應(yīng)用:(一)利用平面法向量求線面角方法:如圖3,AB為平面的斜線,n為平面的法向量如果與n之間所成的角為銳角,則斜線AB與平面之間所成的角為;若為鈍角(當(dāng)n方向朝另一面時,即與圖3的n反向時),則故欲求斜線AB與平面所成的角,只需求出向量與平面的法向量n之間的夾角即可總之例3在長方體中,求直線和平面所成角的正弦值解:如圖4,以D為原點,以方向分別作為x軸、y軸、z軸的正方向,則,設(shè)平面的法向量,則,即故是其中一組解,即為其中一個法向量,所以故所求角的正弦值為(二)利用平面法向量求二面角的平面角方法:如圖5,平面的法向量所成的角即為二面角的平面角(或其補角)例4在正方體中,、分別是的中點,求平面和底面所成銳二面角的余弦值解:建立空間直角坐標(biāo)系,如圖6所示由例3的方法,容易求得平面的法向量,底面的法向量,所以,即為所求角的余弦值(三)利用平面法向量求點到平面的距離方法:如圖7,求點P到平面的距離d,可以在平面上任意取一點,則(n為平面的法向量,方向如圖)若不知n與夾角為銳角或鈍角時,例5如圖8,四面體中,、分別是BD、BC的中點,(1)求證:平面;(2)求點到平面的距離(1)證明:連結(jié)OC,在中,由已知可得,而,即,平面;(2)解:以為原點,如圖8建立空間直角坐標(biāo)系設(shè)平面的法向量為,則令,得是平面的一個法向量又,點到平面的距離評注:求線面距、面面距時,可先轉(zhuǎn)化為點面距,再用此法求解(四)求異面直線的距離方法:先求出同時與兩異面直線垂直的向量n,然后在兩異面直線上分別任取點、,則。例6已知正方體的棱長為1,求直線與的距離解:建立坐標(biāo)系,如圖9所示則點,則,設(shè)為與與同時垂直的向量即故為其中一個向量,所以直線與的距離為- 1.請仔細閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領(lǐng)!既往收益都歸您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該PPT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 空間向量及其運算 2019 2020 年蘇教版 高中數(shù)學(xué) 選修 3.1 空間 向量 及其 運算 word 教案
鏈接地址:http://italysoccerbets.com/p-6262280.html