2019-2020年人教版高中數(shù)學(xué)選修1-1教案:2-3-1 雙曲線及其標(biāo)準(zhǔn)方程.doc
《2019-2020年人教版高中數(shù)學(xué)選修1-1教案:2-3-1 雙曲線及其標(biāo)準(zhǔn)方程.doc》由會員分享,可在線閱讀,更多相關(guān)《2019-2020年人教版高中數(shù)學(xué)選修1-1教案:2-3-1 雙曲線及其標(biāo)準(zhǔn)方程.doc(5頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年人教版高中數(shù)學(xué)選修1-1教案:2-3-1 雙曲線及其標(biāo)準(zhǔn)方程項目內(nèi)容課題2.3.1 雙曲線及其標(biāo)準(zhǔn)方程(共 1 課時)修改與創(chuàng)新教學(xué)目標(biāo)知識與技能:使學(xué)生理解并掌握雙曲線的定義,掌握雙曲線的標(biāo)準(zhǔn)方程的推導(dǎo)及標(biāo)準(zhǔn)方程。過程與方法:了解雙曲線的實際背景,經(jīng)歷從具體情境中抽象出雙曲線模型的過程,感受雙曲線定義在解決實際問題中的作用。情感、態(tài)度與價值觀:通過對雙曲線的定義及標(biāo)準(zhǔn)方程的學(xué)習(xí),滲透數(shù)形結(jié)合的思想,啟發(fā)我們在研究問題時,抓住問題的本質(zhì)。教學(xué)重、難點重點:雙曲線的定義和雙曲線的標(biāo)準(zhǔn)方程難點:雙曲線的標(biāo)準(zhǔn)方程的推導(dǎo)教學(xué)準(zhǔn)備多媒體課件教學(xué)過程(一)復(fù)習(xí)提問1橢圓的定義是什么?平面內(nèi)與兩定點F1、F2的距離的和等于常數(shù)(大于|F1F2|)的點的軌跡叫做橢圓教師要強調(diào)條件:(1)平面內(nèi);(2)到兩定點F1、F2的距離的和等于常數(shù);(3)常數(shù)2a| F1F2|2橢圓的標(biāo)準(zhǔn)方程?(二)雙曲線的概念把橢圓定義中的“距離的和”改為“距離的差”,那么點的軌跡會怎樣?它的方程是怎樣的呢?1簡單實驗(邊演示、邊說明)如圖,定點F1、F2是兩個按釘,MN是一個細套管,兩條細繩分別拴在按釘上且穿過套管,點M移動時,|MF1|-|MF2|是常數(shù),這樣就畫出曲線的一支;由|MF2|-|MF1|是同一常數(shù),可以畫出另一支注意:常數(shù)要小于| F1F2|,否則作不出圖形這樣作出的曲線就叫做雙曲線2設(shè)問問題1:定點F1、F2與動點M不在平面上,能否得到雙曲線?請學(xué)生回答,不能強調(diào)“在平面內(nèi)”問題2:|MF1|與|MF2|哪個大?請學(xué)生回答,不定:當(dāng)M在雙曲線右支上時,|MF1|MF2|;當(dāng)點M在雙曲線左支上時,|MF1|MF2|問題3:點M與定點F1、F2距離的差是否就是|MF1|-|MF2|?請學(xué)生回答,不一定,也可以是|MF2|-|MF1|正確表示為|MF2|-|MF1|問題4:這個常數(shù)是否會大于等于|F1F2|?請學(xué)生回答,應(yīng)小于|F1F2|且大于零當(dāng)常數(shù)=|F1F2|時,軌跡是以F1、F2為端點的兩條射線;當(dāng)常數(shù)|F1F2|時,無軌跡3定義在上述基礎(chǔ)上,引導(dǎo)學(xué)生概括雙曲線的定義:平面內(nèi)與兩定點F1、F2的距離的差的絕對值是常數(shù)(小于|F1F2|)的點的軌跡叫做雙曲線這兩個定點F1、F2叫做雙曲線的焦點,兩個焦點之間的距離叫做焦距教師指出:雙曲線的定義可以與橢圓相對照來記憶,不要死記(三)雙曲線的標(biāo)準(zhǔn)方程現(xiàn)在來研究雙曲線的方程我們可以類似求橢圓的方程的方法來求雙曲線的方程這時設(shè)問:求橢圓的方程的一般步驟方法是什么?不要求學(xué)生回答,主要引起學(xué)生思考,隨即引導(dǎo)學(xué)生給出雙曲線的方程的推導(dǎo)標(biāo)準(zhǔn)方程的推導(dǎo):(1)建系設(shè)點取過焦點F1、F2的直線為x軸,線段F1F2的垂直平分線為y軸(如圖2-24)建立直角坐標(biāo)系設(shè)M(x,y)為雙曲線上任意一點,雙曲線的焦距是2c(c0),那么F1、F2的坐標(biāo)分別是(-c,0)、(c,0)又設(shè)點M與F1、F2的距離的差的絕對值等于常數(shù)(2)點的集合由定義可知,雙曲線就是集合:P=M|MF1|-|MF2|=2a=M|MF1|-|MF2|=2a(3)代數(shù)方程(4)化簡方程(由學(xué)生演板)將這個方程移項,兩邊平方得:化簡整理得:(c2-a2)x2-a2y2=a2(c2-a2)(以上推導(dǎo)完全可以仿照橢圓方程的推導(dǎo))由雙曲線定義,2c2a 即ca,所以c2-a20設(shè)c2-a2=b2(b0),代入上式得:b2x2-a2y2=a2b2這就是雙曲線的標(biāo)準(zhǔn)方程兩種標(biāo)準(zhǔn)方程的比較(引導(dǎo)學(xué)生歸納):說明:(1)雙曲線標(biāo)準(zhǔn)方程中,a0,b0,但a不一定大于b;(2)如果x2項的系數(shù)是正的,那么焦點在x軸上;如果y2項的系數(shù)是正的,那么焦點在y軸上注意有別于橢圓通過比較分母的大小來判定焦點在哪一坐標(biāo)軸上(3)雙曲線標(biāo)準(zhǔn)方程中a、b、c的關(guān)系是c2=a2+b2,不同于橢圓方程中c2=a2-b2(四)例題講解:1求滿足下列的雙曲線的標(biāo)準(zhǔn)方程:焦點F1(-3,0)、F2(3,0),且2a=4;3已知兩點F1(-5,0)、F2(5,0),求與它們的距離的差的絕對值是6的點的軌跡方程如果把這里的數(shù)字6改為12,其他條件不變,會出現(xiàn)什么情況?解:由定義,所求點的軌跡是雙曲線,因為c=5,a=3,所以b2=c2-a2=52-32=42因為2a=12,2c=10,且2a2c所以動點無軌跡(五)課時小結(jié)1定義:平面內(nèi)與兩定點F1、F2的距離的差的絕對值等于常數(shù)(小于|F1F2|)的點的軌跡3圖形:4焦點:F1(-c,0)、F2(c,0);F1(0,-c)、F2(0,c)5a、b、c的關(guān)系:c2=a2+b2五、布置作業(yè)1根據(jù)下列條件,求雙曲線的標(biāo)準(zhǔn)方程:(1)焦點的坐標(biāo)是(-6,0)、(6,0),并且經(jīng)過點A(-5,2);3已知圓錐曲線的方程為mx2+ny2=m+n(m0m+n),求其焦點坐標(biāo)板書設(shè)計2.3.1 雙曲線及其標(biāo)準(zhǔn)方程1.雙曲線的定義2. 雙曲線的標(biāo)準(zhǔn)方程 例(1)焦點在x軸上(2)焦點在y軸上教學(xué)反思1.為讓學(xué)生更深刻地理解雙曲線的定義,在給出定義后,讓學(xué)生分析:平面內(nèi)到兩定點F1、F2的距離之和等于| F1F2|)的點的軌跡是什么?大于| F1F2|)的點的軌跡是什么?2.標(biāo)準(zhǔn)方程的推導(dǎo),在老師的指導(dǎo)下,讓學(xué)生自己推導(dǎo),以提高學(xué)生的運算能力。- 1.請仔細閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認(rèn)領(lǐng)!既往收益都歸您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該PPT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年人教版高中數(shù)學(xué)選修1-1教案:2-3-1 雙曲線及其標(biāo)準(zhǔn)方程 2019 2020 年人教版 高中數(shù)學(xué) 選修 教案 雙曲線 及其 標(biāo)準(zhǔn) 方程
鏈接地址:http://italysoccerbets.com/p-6222472.html