2019-2020年人教版高中數(shù)學(xué)必修二教案:4-2-2 圓與圓的位置關(guān)系.doc
《2019-2020年人教版高中數(shù)學(xué)必修二教案:4-2-2 圓與圓的位置關(guān)系.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020年人教版高中數(shù)學(xué)必修二教案:4-2-2 圓與圓的位置關(guān)系.doc(6頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年人教版高中數(shù)學(xué)必修二教案:4-2-2 圓與圓的位置關(guān)系項(xiàng)目?jī)?nèi)容課題4.2.2 圓與圓的位置關(guān)系(1課時(shí))修改與創(chuàng)新教學(xué)目標(biāo)使學(xué)生理解并掌握?qǐng)A和圓的位置關(guān)系及其判定方法.培養(yǎng)學(xué)生自主探究的能力.通過用代數(shù)的方法分析圓與圓的位置關(guān)系,使學(xué)生體驗(yàn)幾何問題代數(shù)化的思想,深入了解解析幾何的本質(zhì),同時(shí)培養(yǎng)學(xué)生分析問題、解決問題的能力,并進(jìn)一步體會(huì)數(shù)形結(jié)合的思想.教學(xué)重、難點(diǎn)教學(xué)重點(diǎn):求弦長(zhǎng)問題,判斷圓和圓的位置關(guān)系.教學(xué)難點(diǎn):判斷圓和圓的位置關(guān)系.教學(xué)準(zhǔn)備多媒體課件教學(xué)過程導(dǎo)入新課平面幾何中,圓與圓的位置關(guān)系有哪幾種呢?如何判斷圓與圓之間的位置關(guān)系呢?判斷兩圓的位置關(guān)系的步驟及其判斷方法如下:第一步:計(jì)算兩圓的半徑R,r;第二步:計(jì)算兩圓的圓心距O1O2,即d;第三步:根據(jù)d與R,r之間的關(guān)系,判斷兩圓的位置關(guān)系.兩圓的位置關(guān)系:外離外切相交內(nèi)切內(nèi)含dR+rd=R+r|R-r|dR+rd=|R-r|d|R-r| 在解析幾何中,我們用代數(shù)的方法如何判斷圓與圓之間的位置關(guān)系呢?這就是我們本堂課研究的課題,教師板書課題圓與圓的位置關(guān)系.推進(jìn)新課新知探究提出問題初中學(xué)過的平面幾何中,圓與圓的位置關(guān)系有幾種?判斷兩圓的位置關(guān)系,你有什么好的方法嗎?你能在同一個(gè)直角坐標(biāo)系中畫出兩個(gè)方程所表示的圓嗎?根據(jù)你所畫出的圖形,可以直觀判斷兩個(gè)圓的位置關(guān)系.如何把這些直觀的事實(shí)轉(zhuǎn)化為數(shù)學(xué)語言呢?如何判斷兩個(gè)圓的位置關(guān)系呢?若將兩個(gè)圓的方程相減,你發(fā)現(xiàn)了什么??jī)蓚€(gè)圓的位置關(guān)系是否可以轉(zhuǎn)化為一條直線與兩個(gè)圓中的一個(gè)圓的關(guān)系的判定呢?活動(dòng): 教師引導(dǎo)學(xué)生回顧學(xué)過的知識(shí)、舉例,并對(duì)學(xué)生活動(dòng)進(jìn)行評(píng)價(jià);學(xué)生回顧知識(shí)點(diǎn)時(shí),可互相交流.教師引導(dǎo)學(xué)生閱讀教科書中的相關(guān)內(nèi)容,注意個(gè)別輔導(dǎo),解答學(xué)生疑難,并引導(dǎo)學(xué)生自己總結(jié)解題的方法.學(xué)生觀察圖形并思考,發(fā)表自己的解題方法.教師應(yīng)該關(guān)注并發(fā)現(xiàn)有多少學(xué)生利用“圖形”求解,對(duì)這些學(xué)生應(yīng)該給予表揚(yáng).同時(shí)強(qiáng)調(diào),解析幾何是一門數(shù)與形結(jié)合的學(xué)科.啟發(fā)學(xué)生利用圖形的特征,用代數(shù)的方法來解決幾何問題.教師指導(dǎo)學(xué)生利用兩個(gè)圓的圓心坐標(biāo)、半徑長(zhǎng)、連心線長(zhǎng)的關(guān)系來判別兩個(gè)圓的位置.學(xué)生互相探討、交流,尋找解決問題的方法,并能通過圖形的直觀性,利用平面直角坐標(biāo)系的兩點(diǎn)間距離公式尋求解題的途徑.討論結(jié)果:初中學(xué)過的平面幾何中,圓與圓的位置關(guān)系有五類,分別是外離、外切、相交、內(nèi)切、內(nèi)含.判斷兩圓的位置關(guān)系,我們可以類比直線與圓的位置關(guān)系的判定,目前我們只有初中學(xué)過的幾何法,利用圓心距與兩圓半徑的和與差之間的關(guān)系判斷.略.根據(jù)所畫出的圖形,可以直觀判斷兩個(gè)圓的位置關(guān)系.用幾何的方法說就是圓心距(d)與兩圓半徑(r,R)的和與差之間的關(guān)系.判斷兩個(gè)圓的位置關(guān)系.一是可以利用幾何法,即兩個(gè)圓的圓心坐標(biāo)、半徑長(zhǎng)、連心線長(zhǎng)的關(guān)系來判別兩個(gè)圓的位置關(guān)系.設(shè)兩圓的連心線長(zhǎng)為l,則判別圓與圓的位置關(guān)系的依據(jù)有以下幾點(diǎn):1當(dāng)dR+r時(shí),圓C1與圓C2外離;2當(dāng)d=R+r時(shí),圓C1與圓C2外切;3當(dāng)|R-r|dR+r時(shí),圓C1與圓C2相交;4當(dāng)d=|R-r|時(shí),圓C1與圓C2內(nèi)切;5當(dāng)d|R-r|時(shí),圓C1與圓C2內(nèi)含; 二是看兩圓的方程組成的方程組的實(shí)數(shù)解的情況,解兩個(gè)圓的方程所組成的二元二次方程組.若方程組有兩組不同的實(shí)數(shù)解,則兩圓相交;若方程組有兩組相同的實(shí)數(shù)解,則兩圓相切;若無實(shí)數(shù)解,兩圓相離.總結(jié)比較兩種方法的優(yōu)缺點(diǎn).幾何方法:直觀,容易理解,但不能求出交點(diǎn)坐標(biāo).代數(shù)方法:1只能判斷交點(diǎn),并不能準(zhǔn)確的判斷位置關(guān)系(有一個(gè)交點(diǎn)時(shí)不能判斷內(nèi)切還是外切,無交點(diǎn)時(shí)不能判斷內(nèi)含還是外離).2優(yōu)點(diǎn)是可以求出公共點(diǎn).若將兩個(gè)圓的方程相減,得到一個(gè)一元一次方程,既直線方程,由于它過兩圓的交點(diǎn),所以它是相交兩圓的公共弦的方程.兩個(gè)圓的公共點(diǎn)的問題可以化歸為這條公共直線與兩個(gè)圓中的一個(gè)圓的公共點(diǎn)的判定問題.由點(diǎn)到直線的距離公式來判斷.應(yīng)用示例例1 已知圓C1:x2+y2+2x+8y-8=0,圓C2:x2+y2-4x-4y-2=0,判斷兩圓的位置關(guān)系.活動(dòng):學(xué)生思考交流,教師引導(dǎo)提示,判斷兩圓的位置關(guān)系有兩種基本的方法,要合理使用.方法一看兩圓的方程組成的方程組的實(shí)數(shù)解的情況,方法二利用圓心距與兩圓半徑的和與差之間的關(guān)系判斷.解:方法一:圓C1與圓C2的方程聯(lián)立得到方程組-得x+2y-1=0, 由得y=,把上式代入并整理得x2-2x-3=0. 方程的判別式=(-2)2-41(-3)=160,所以方程有兩個(gè)不等的實(shí)數(shù)根,即圓C1與圓C2相交.方法二:把圓C1:x2+y2+2x+8y-8=0,圓C2:x2+y2-4x-4y-2=0,化為標(biāo)準(zhǔn)方程,得(x+1)2+(y+4)2=25與(x-2)2+(y-2)2=10.圓C1的圓心是點(diǎn)(-1,-4),半徑長(zhǎng)r1=5;圓C2的圓心是點(diǎn)(2,2),半徑長(zhǎng)r2=.圓C1與圓C2的連心線的長(zhǎng)為=3,圓C1與圓C2的半徑長(zhǎng)之和為r1+r2=5+,半徑長(zhǎng)之差為r1-r2=5-.而5-35+,即r1-r23r1+r2,所以圓C1與圓C2相交,它們有兩個(gè)公共點(diǎn)A、B.點(diǎn)評(píng):判斷兩圓的位置關(guān)系,一般情況下,先化為標(biāo)準(zhǔn)方程,利用幾何法判斷較為準(zhǔn)確直觀.變式訓(xùn)練 判斷下列兩圓的位置關(guān)系,如果兩圓相交,請(qǐng)求出公共弦的方程.(1)(x+2)2+(y-2)2=1與(x-2)2+(y-5)2=16,(2)x2+y2+6x-7=0與x2+y2+6y-27=0.解:(1)根據(jù)題意,得兩圓的半徑分別為r1=1和r2=4,兩圓的圓心距d=5.因?yàn)閐=r1+r2,所以兩圓外切.(2)將兩圓的方程化為標(biāo)準(zhǔn)方程,得(x+3)2+y2=16,x2+(y+3)2=36.故兩圓的半徑分別為r1=4和r2=6,兩圓的圓心距d=.因?yàn)閨r1-r2|dr1+r2,所以兩圓相交.例2 已知圓C1:x2+y2+2x-6y+1=0,圓C2:x2+y2-4x+2y-11=0,求兩圓的公共弦所在的直線方程及公共弦長(zhǎng).活動(dòng):學(xué)生審題,思考并交流,探討解題的思路,教師及時(shí)提示引導(dǎo),因兩圓的交點(diǎn)坐標(biāo)同時(shí)滿足兩個(gè)圓方程,聯(lián)立方程組,消去x2項(xiàng)、y2項(xiàng),即得兩圓的兩個(gè)交點(diǎn)所在的直線方程,利用勾股定理可求出兩圓公共弦長(zhǎng).解:設(shè)兩圓交點(diǎn)為A(x1,y1)、B(x2,y2),則A、B兩點(diǎn)坐標(biāo)滿足方程組-,得3x-4y+6=0.因?yàn)锳、B兩點(diǎn)坐標(biāo)都滿足此方程,所以3x-4y+6=0即為兩圓公共弦所在的直線方程.易知圓C1的圓心(-1,3),半徑r=3.又點(diǎn)C1到直線的距離為d=.所以AB=2,即兩圓的公共弦長(zhǎng)為.點(diǎn)評(píng):處理圓有關(guān)的問題,利用圓的幾何性質(zhì)往往比較簡(jiǎn)單,要注意體會(huì)和應(yīng)用.知能訓(xùn)練課堂練習(xí)P141練習(xí)題課堂小結(jié)本節(jié)課主要學(xué)習(xí)了圓與圓的位置關(guān)系,判斷方法:幾何方法和代數(shù)方法.作業(yè)習(xí)題4.2 A組8、9、10、11.板書設(shè)計(jì) 4.2.2 圓與圓的位置關(guān)系圓與圓的位置關(guān)系: 例1相離、外切、相交、內(nèi)切、內(nèi)含 變式 例2教學(xué)反思本節(jié)課研究圓與圓的位置關(guān)系,重點(diǎn)是研究?jī)蓤A位置關(guān)系的判斷方法,并應(yīng)用這些方法解決有關(guān)的實(shí)際問題.教材是在初中平面幾何對(duì)圓與圓的位置關(guān)系的初步分析的基礎(chǔ)上得到圓與圓的位置關(guān)系的幾何方法,但用代數(shù)的方法來解決幾何問題是解析幾何的精髓,是平面幾何問題的深化,它將是以后處理圓錐曲線的基本方法.前一堂課學(xué)習(xí)過直線與圓的位置關(guān)系,圓與圓的位置關(guān)系的研究和直線與圓的位置關(guān)系的研究方法是類似的,所以可以用類比的思想來引導(dǎo)學(xué)生自主地探究圓與圓的位置關(guān)系.作為解析幾何的一堂課,判斷圓與圓的位置關(guān)系,體現(xiàn)的正是解析幾何的思想:用代數(shù)方法處理幾何問題,用幾何方法處理代數(shù)問題.所以在教材處理上,對(duì)判斷兩圓位置關(guān)系用了代數(shù)和幾何兩種方法,兩種方法貫穿始終,使學(xué)生對(duì)解析幾何的本質(zhì)有所了解- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年人教版高中數(shù)學(xué)必修二教案:4-2-2 圓與圓的位置關(guān)系 2019 2020 年人教版 高中數(shù)學(xué) 必修 教案 位置 關(guān)系
鏈接地址:http://italysoccerbets.com/p-6157398.html