2019-2020年高考數(shù)學(xué)第二輪復(fù)習(xí) 坐標(biāo)系與參數(shù)方程 文.doc
《2019-2020年高考數(shù)學(xué)第二輪復(fù)習(xí) 坐標(biāo)系與參數(shù)方程 文.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020年高考數(shù)學(xué)第二輪復(fù)習(xí) 坐標(biāo)系與參數(shù)方程 文.doc(6頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高考數(shù)學(xué)第二輪復(fù)習(xí) 坐標(biāo)系與參數(shù)方程 文真題試做1(xx北京高考,理9)直線(t為參數(shù))與曲線(為參數(shù))的交點(diǎn)個(gè)數(shù)為_(kāi)2(xx江西高考,理15)曲線C的直角坐標(biāo)方程為x2y22x0,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,則曲線C的極坐標(biāo)方程為_(kāi)3(xx浙江高考,自選模塊,04)在直角坐標(biāo)系xOy中,設(shè)傾斜角為的直線l:(t為參數(shù))與曲線C:(為參數(shù))相交于不同兩點(diǎn)A,B(1)若,求線段AB中點(diǎn)M的坐標(biāo);(2)若|PA|PB|OP|2,其中P(2,),求直線l的斜率4(xx課標(biāo)全國(guó)高考,理23)已知曲線C1的參數(shù)方程是(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程是2.正方形ABCD的頂點(diǎn)都在C2上,且A,B,C,D依逆時(shí)針次序排列,點(diǎn)A的極坐標(biāo)為.(1)求點(diǎn)A,B,C,D的直角坐標(biāo);(2)設(shè)P為C1上任意一點(diǎn),求|PA|2|PB|2|PC|2|PD|2的取值范圍5(xx遼寧高考,文23)在直角坐標(biāo)系xOy中,圓C1:x2y24,圓C2:(x2)2y24.(1)在以O(shè)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,分別寫出圓C1,C2的極坐標(biāo)方程,并求出圓C1,C2的交點(diǎn)坐標(biāo)(用極坐標(biāo)表示);(2)求圓C1與C2的公共弦的參數(shù)方程考向分析從近幾年的高考情況看,該部分主要有三個(gè)考點(diǎn):一是平面坐標(biāo)系的伸縮變換;二是極坐標(biāo)方程與直角坐標(biāo)方程的互化;三是極坐標(biāo)方程與參數(shù)方程的綜合應(yīng)用對(duì)于平面坐標(biāo)系的伸縮變換,主要是以平面直角坐標(biāo)系和極坐標(biāo)系為平臺(tái),考查伸縮變換公式的應(yīng)用,試題設(shè)計(jì)大都是運(yùn)用坐標(biāo)法研究點(diǎn)的位置或研究幾何圖形的形狀對(duì)于極坐標(biāo)方程與直角坐標(biāo)方程的互化,是高考的重點(diǎn)和熱點(diǎn),涉及到直線與圓的極坐標(biāo)方程,從點(diǎn)與直線、直線與圓的位置關(guān)系等不同角度考查,研究求距離、最值、軌跡等常規(guī)問(wèn)題極坐標(biāo)方程與參數(shù)方程的綜合應(yīng)用,主要是以直線、圓和圓錐曲線的參數(shù)方程為背景,轉(zhuǎn)化為普通方程,從而進(jìn)一步判斷位置關(guān)系或進(jìn)行有關(guān)距離、最值的運(yùn)算預(yù)計(jì)xx年高考中,本部分內(nèi)容主要考查極坐標(biāo)方程與直角坐標(biāo)方程的互化、參數(shù)方程與普通方程的互化,考查簡(jiǎn)單曲線的極坐標(biāo)方程和參數(shù)方程,試題以解答題的形式呈現(xiàn),屬于中檔題熱點(diǎn)例析熱點(diǎn)一平面坐標(biāo)系的伸縮變換【例1】在同一平面直角坐標(biāo)系中,將直線x2y2變成直線2xy4,求滿足圖象變換的伸縮變換規(guī)律方法 1平面坐標(biāo)系的伸縮變換對(duì)圖形的變化起到了一個(gè)壓縮或拉伸的作用,如三角函數(shù)圖象周期的變化2設(shè)點(diǎn)P(x,y)是平面直角坐標(biāo)系中的任意一點(diǎn),在變換:的作用下,點(diǎn)P(x,y)對(duì)應(yīng)到點(diǎn)P(x,y),稱為平面直角坐標(biāo)系中的坐標(biāo)伸縮變換,簡(jiǎn)稱伸縮變換變式訓(xùn)練1 在同一平面直角坐標(biāo)系中,經(jīng)過(guò)伸縮變換后,曲線C變?yōu)榍€2x28y21,則曲線C的方程為()A50x272y21B9x2100y21C25x236y21Dx2y21熱點(diǎn)二極坐標(biāo)方程與直角坐標(biāo)方程的互化【例2】在極坐標(biāo)系中,已知圓2cos 與直線3cos 4sin a0相切,求實(shí)數(shù)a的值規(guī)律方法 1直角坐標(biāo)和極坐標(biāo)的互化把直角坐標(biāo)系的原點(diǎn)作為極點(diǎn),x軸的正半軸作為極軸,并在兩坐標(biāo)系中取相同的長(zhǎng)度單位,設(shè)M是平面內(nèi)任意一點(diǎn),它的直角坐標(biāo)是(x,y),極坐標(biāo)是(,),則xcos ,ysin 且2x2y2,tan (x0)這就是直角坐標(biāo)和極坐標(biāo)的互化公式2曲線的極坐標(biāo)方程的概念:在極坐標(biāo)系中,如果平面曲線C上任意一點(diǎn)的極坐標(biāo)至少有一個(gè)滿足方程f(,)0,并且坐標(biāo)適合f(,)0的點(diǎn)都在曲線C上,那么方程f(,)0就叫做曲線C的極坐標(biāo)方程變式訓(xùn)練2 圓O1和圓O2的極坐標(biāo)方程分別為4cos ,sin .(1)把圓O1和圓O2的極坐標(biāo)方程化為直角坐標(biāo)方程;(2)求經(jīng)過(guò)圓O1,圓O2兩個(gè)交點(diǎn)的直線的直角坐標(biāo)方程熱點(diǎn)三參數(shù)方程與普通方程的互化【例3】把下列參數(shù)方程化為普通方程:(1)(2)規(guī)律方法 1參數(shù)方程部分,重點(diǎn)還是參數(shù)方程與普通方程的互化,主要是將參數(shù)方程消去參數(shù)化為普通方程2參數(shù)方程與普通方程的互化:參數(shù)方程化為普通方程的過(guò)程就是消參過(guò)程,常見(jiàn)方法有三種:代入法:利用解方程的技巧求出參數(shù)t,然后代入消去參數(shù);三角法:利用三角恒等式消去參數(shù);整體消元法:根據(jù)參數(shù)方程本身的結(jié)構(gòu)特征,從整體上消去參數(shù)化參數(shù)方程為普通方程F(x,y)0:在消參過(guò)程中注意變量x,y取值范圍的一致性,必須根據(jù)參數(shù)的取值范圍,確定f(t)和g(t)的值域即x,y的取值范圍變式訓(xùn)練3 把下列參數(shù)方程化為普通方程,并說(shuō)明它們各表示什么曲線:(1)(t為參數(shù));(2)(為參數(shù))熱點(diǎn)四極坐標(biāo)方程與參數(shù)方程的綜合應(yīng)用【例4】在平面直角坐標(biāo)系xOy中,已知曲線C的參數(shù)方程為(為參數(shù))以直角坐標(biāo)系原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為cos2.點(diǎn)P為曲線C上的動(dòng)點(diǎn),求點(diǎn)P到直線l距離的最大值規(guī)律方法 如果直接由曲線的極坐標(biāo)方程看不出曲線是什么圖形,往往在將曲線的極坐標(biāo)方程化為相應(yīng)的直角坐標(biāo)方程,再通過(guò)直角坐標(biāo)方程判斷出曲線是什么圖形變式訓(xùn)練4 在直角坐標(biāo)系xOy中,直線l的方程為xy40,曲線C的參數(shù)方程為(為參數(shù))(1)已知在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,點(diǎn)P的極坐標(biāo)為,判斷點(diǎn)P與直線l的位置關(guān)系;(2)設(shè)點(diǎn)Q是曲線C上的一個(gè)動(dòng)點(diǎn),求它到直線l的距離的最小值1(xx安徽安慶二模,4)以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),以x軸的正半軸為極軸,建立極坐標(biāo)系,則曲線(為參數(shù),R)上的點(diǎn)到曲線cos sin 4(,R) 的最短距離是()A0B2C1D22設(shè)直線的參數(shù)方程為(t為參數(shù)),則其斜截式方程為_(kāi)3(xx廣東梅州中學(xué)三模,15)在極坐標(biāo)系中,若過(guò)點(diǎn)A(3,0)且與極軸垂直的直線交曲線4cos 于A,B兩點(diǎn),則|AB|_.4(xx北京豐臺(tái)區(qū)三月模擬,11)在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程是(t為參數(shù))以O(shè)為極點(diǎn),x軸正方向?yàn)闃O軸的極坐標(biāo)系中,圓C的極坐標(biāo)方程是24cos 30.則圓心到直線的距離是_5在平面直角坐標(biāo)系xOy中,判斷曲線C:(為參數(shù))與直線l:(t為參數(shù))是否有公共點(diǎn),并證明你的結(jié)論6(xx江蘇鎮(zhèn)江5月模擬,21)已知橢圓C的極坐標(biāo)方程為2,點(diǎn)F1,F(xiàn)2為其左、右焦點(diǎn),直線l的參數(shù)方程為(t為參數(shù),tR)求點(diǎn)F1,F(xiàn)2到直線l的距離之和7(xx浙江鎮(zhèn)海中學(xué),自選模塊04)已知點(diǎn)P(m,0)(mR),曲線C1:(為參數(shù))與曲線C2:cosm交于不同的兩點(diǎn)A,B(極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極徑與直角坐標(biāo)系中x軸的非負(fù)半軸重合)(1)求m的取值范圍;(2)若|PA|PB|,求m的值參考答案命題調(diào)研明晰考向真題試做12解析:由題意知直線與曲線的參數(shù)方程可分別化為xy10,x2y29,進(jìn)而求出圓心(0,0)到直線xy10的距離d3,交點(diǎn)個(gè)數(shù)為2.22cos 3解:設(shè)直線l上的點(diǎn)A,B對(duì)應(yīng)參數(shù)分別為t1,t2,將曲線C的參數(shù)方程化為普通方程y21.(1)當(dāng)時(shí),設(shè)點(diǎn)M對(duì)應(yīng)參數(shù)為t0.直線l方程為(t為參數(shù)),代入曲線C的普通方程y21,得13t256t480,則t0,所以點(diǎn)M的坐標(biāo)為.(2)將代入曲線C的普通方程y21,得(cos24sin2)t2(8sin 4cos )t120,因?yàn)閨PA|PB|t1t2|,|OP|27,所以7,得tan2.由于32cos (2sin cos )0,故tan .所以直線l的斜率為.4解:(1)由已知可得A,B,C,D,即A(1,),B(,1),C(1,),D(,1)(2)設(shè)P(2cos ,3sin ),令S|PA|2|PB|2|PC|2|PD|2,則S16cos236sin2163220sin2.因?yàn)?sin21,所以S的取值范圍是32,525解:(1)圓C1的極坐標(biāo)方程為2,圓C2的極坐標(biāo)方程為4cos .解得2,故圓C1與圓C2交點(diǎn)的坐標(biāo)為,.注:極坐標(biāo)系下點(diǎn)的表示不唯一(2)解法一:由得圓C1與C2交點(diǎn)的直角坐標(biāo)分別為(1,),(1,)故圓C1與C2的公共弦的參數(shù)方程為t.(或參數(shù)方程寫成y)解法二:將x1代入得cos 1,從而.于是圓C1與C2的公共弦的參數(shù)方程為.精要例析聚焦熱點(diǎn)熱點(diǎn)例析【例1】解:設(shè)變換為代入第二個(gè)方程,得2xy4與x2y2比較,將其變成2x4y4,比較系數(shù)得1,4.伸縮變換公式為即直線x2y2圖象上所有點(diǎn)的橫坐標(biāo)不變,縱坐標(biāo)擴(kuò)大到原來(lái)的4倍可得到直線2xy4.【變式訓(xùn)練1】A解析:將代入曲線方程2x28y21,得:2(5x)28(3y)21,即50x272y21.【例2】解:將極坐標(biāo)方程化為直角坐標(biāo)方程,得圓的方程x2y22x,即(x1)2y21,直線的方程為3x4ya0.由題設(shè)知,圓心(1,0)到直線的距離為1,即有1,解得a8或a2.即a的值為8或2.【變式訓(xùn)練2】解:(1)因?yàn)閳AO1和圓O2的極坐標(biāo)方程分別為4cos ,sin ,又因?yàn)?x2y2,cos x,sin y,所以由4cos ,sin 得,24cos ,2sin .即x2y24x0,x2y2y0.所以圓O1和圓O2的直角坐標(biāo)方程分別為x2y24x0,x2y2y0.(2)由(1)易得,經(jīng)過(guò)圓O1和圓O2兩個(gè)交點(diǎn)的直線的直角坐標(biāo)方程為4xy0.【例3】解:(1)由已知由三角恒等式cos2sin21,可知(x3)2(y2)21,這就是它的普通方程(2)由已知,得t2x2,代入y5t中,得y5(2x2),即xy50就是它的普通方程【變式訓(xùn)練3】解:(1)由x1t,得t2x2.y2(2x2)xy20,此方程表示直線(2)由得兩式平方相加得1,此方程表示橢圓【例4】解:cos2化簡(jiǎn)為cos sin 4,則直線l的直角坐標(biāo)方程為xy4.設(shè)點(diǎn)P的坐標(biāo)為(2cos ,sin ),得P到直線l的距離d,即d,其中cos ,sin .當(dāng)sin()1時(shí),dmax2.【變式訓(xùn)練4】解:(1)把極坐標(biāo)系中的點(diǎn)P化為直角坐標(biāo),得P(0,4)因?yàn)辄c(diǎn)P的直角坐標(biāo)(0,4)滿足直線l的方程xy40,所以點(diǎn)P在直線l上(2)因?yàn)辄c(diǎn)Q在曲線C上,故可設(shè)點(diǎn)Q的坐標(biāo)為(cos ,sin ),從而點(diǎn)Q到直線l的距離是dcos2,由此得,當(dāng)cos1時(shí),d取得最小值,且最小值為.創(chuàng)新模擬預(yù)測(cè)演練1B2yx323245解:沒(méi)有公共點(diǎn)證明如下:直線l的普通方程為x2y30.把曲線C的參數(shù)方程代入l的方程x2y30,得2cos 2sin 30,即sin.因?yàn)閟in,而,所以方程sin無(wú)解即曲線C與直線l沒(méi)有公共點(diǎn)6解:直線l的普通方程為yx2;曲線C的普通方程為1.F1(1,0),F(xiàn)2(1,0),點(diǎn)F1到直線l的距離d1,點(diǎn)F2到直線l的距離d2,d1d22.7解:(1)曲線C1化為普通方程C1:y21,曲線C2化為普通方程C2:yxm,由得5x28mx4m240.由64m220(4m24)0,得m25.m的取值范圍為m.(2)因?yàn)辄c(diǎn)P在直線C2上,故直線C2可化為參數(shù)式:代入C1:y21中,得21,即得5t22mt2m280.設(shè)方程5t22mt2m280的兩根為t1,t2,則|PA|PB|t1t2|,由m21或m27(不合題意,舍去),當(dāng)|PA|PB|時(shí),m1.- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高考數(shù)學(xué)第二輪復(fù)習(xí) 坐標(biāo)系與參數(shù)方程 2019 2020 年高 數(shù)學(xué) 二輪 復(fù)習(xí) 坐標(biāo)系 參數(shù) 方程
鏈接地址:http://italysoccerbets.com/p-5528193.html