180型復(fù)合管鏈條式脫模機(jī)的設(shè)計(jì)【含4張CAD圖帶開題報(bào)告+外文翻譯-獨(dú)家】.zip
180型復(fù)合管鏈條式脫模機(jī)的設(shè)計(jì)【含4張CAD圖帶開題報(bào)告+外文翻譯-獨(dú)家】.zip,含4張CAD圖帶開題報(bào)告+外文翻譯-獨(dú)家,180,復(fù)合管,鏈條,脫模,設(shè)計(jì),CAD,開題,報(bào)告,外文,翻譯,獨(dú)家
180型復(fù)合管脫模機(jī)(鏈條式)設(shè)計(jì)目 錄摘 要 . IAbstract . II第一章 緒論 .11.1 目的及意義.11.2 發(fā)展?fàn)顩r .1第二章總體脫模方案的確定 .22.1 總體脫模方案 .2第三章 驅(qū)動(dòng)裝置的選擇.43.1 電動(dòng)機(jī)的選擇.43.2 傳動(dòng)比的分配.73.3 傳動(dòng)裝置對(duì)運(yùn)動(dòng)和參數(shù)計(jì)算.63.4 鏈條傳動(dòng)設(shè)計(jì)方案.73.5 軸的設(shè)計(jì)及校核.123.6 液壓缸的設(shè)計(jì).163.7 主要部件的設(shè)計(jì).18第四章標(biāo)準(zhǔn)件的設(shè)計(jì).214.1 螺栓的選擇.214.2 螺栓的選擇.214.3 鍵的選擇.214.4 滾動(dòng)軸的選擇.22總 結(jié) .23致 謝 .24摘 要復(fù)合管是一種外觀豪華,強(qiáng)度高,價(jià)格適中的裝飾材料。按不同的加工工藝生產(chǎn)的復(fù)合管其特性與價(jià)格也各不相同。纖維纏繞和脫模機(jī)作為生產(chǎn)作為復(fù)合纖維纏繞制品的專用設(shè)備,它是機(jī)械設(shè)計(jì)制造的重要內(nèi)容。針對(duì)180型復(fù)合管脫模裝置設(shè)計(jì),本文提出了180型復(fù)合管脫模的整體設(shè)計(jì)方案、設(shè)計(jì)目標(biāo)和功能要求,給出了脫模機(jī)的整體結(jié)構(gòu)和傳動(dòng)執(zhí)行部件的具體設(shè)計(jì)實(shí)現(xiàn)方案,并對(duì)主要零部件進(jìn)行了校核。本文涉及的180型復(fù)合管裝置主要由脫模機(jī)基座、鏈條傳動(dòng)、液壓系統(tǒng)以及芯片磨夾緊機(jī)構(gòu)組成。脫模機(jī)基座為本次設(shè)計(jì)的基礎(chǔ),液壓系統(tǒng)負(fù)責(zé)提供脫模力,鏈條傳動(dòng)用于將芯模拉出,芯模夾緊機(jī)構(gòu)由卡圈和基座等部分組成,主要實(shí)現(xiàn)芯模沿著自身軸線移動(dòng)。關(guān)鍵詞:玻璃鋼;脫模設(shè)備;鏈條傳動(dòng);液壓系統(tǒng)IIAbstractComposite pipe is a decorative material with luxurious appearance,high intensity and moderate price. The properties and prices of composite pipes produced by different processing technologies are also different. Filament winding and demoulding machines are special equipments for producing composite filament winding products. They are important parts of mechanical design and manufacture.In view of the design of 180 type compound pipe die removal device, the overall design scheme, design target and functional requirements of the 180 type compound pipe die release are put forward. The design and Realization of the whole structure of the demoulding machine and the implementation of the driving components are given, and the main parts are checked.The 180 type composite pipe device is mainly composed of a pedestal base, a chain drive, a hydraulic system and a chip grinding clamping mechanism. The base of the demoulding machine is the foundation of this design. The hydraulic system is responsible for providing the demoulding force. The chain drive is used to pull out the core mold. The core mould clamping mechanism is composed of the ring and the base, which mainly realizes the movement of the core mold along its axis.Keywords: FRP; demoulding equipment; chain drive; hydraulic systemIII第1章 緒論1.1 目的及意義復(fù)合管作為一種新型復(fù)合材料,在我們?nèi)粘I钪杏兄謴V泛的應(yīng)用通過在兩端裝上電極系統(tǒng),使各自兩端都能獨(dú)立通過電子流從而實(shí)現(xiàn)各種功能,復(fù)合管經(jīng)常被用于電力、石油、化工、冶金、采礦、污水處理等工業(yè)領(lǐng)域。本次畢業(yè)設(shè)計(jì)的題目是“180型復(fù)合管脫模裝置(鏈條式)”。此次設(shè)計(jì)的目的是設(shè)計(jì)出一款針對(duì)于圓柱形的或管狀芯模的機(jī)械傳動(dòng)的脫模裝置。此裝置有著自動(dòng)化的特點(diǎn),通過電機(jī)、齒輪。鏈條等進(jìn)行機(jī)械傳動(dòng)從而達(dá)成脫模自動(dòng)化,可以讓人免于勞動(dòng)強(qiáng)度大、精確度低、效率低的人工脫模。本次設(shè)計(jì)得出的鏈條式脫模裝置作為機(jī)械傳動(dòng)式脫模裝置的一種,它通過鏈輪、鏈條、小車等零部件所組成的傳動(dòng)系統(tǒng),再配合由固定擋塊和可換擋圈所組成的脫模系統(tǒng),實(shí)現(xiàn)芯模(或管模)的脫模運(yùn)動(dòng)。于此同時(shí),輥輪、托塊、支架等輔助設(shè)備在脫模過程中主要起到了支撐作用,從而保證傳動(dòng)和脫模的平穩(wěn)進(jìn)行。該脫模裝置制品最大直徑為180mm,長(zhǎng)度最大為2500mm,脫模力為15噸(80000N),脫模后可以較好地保證芯模表面無損傷,從而提高制造出來的產(chǎn)品的壽命與質(zhì)量,以方便工程上的使用。1.2 發(fā)展?fàn)顩r復(fù)合管是近年來我國(guó)發(fā)展前景十分良好的一個(gè)產(chǎn)品,通過對(duì)以往的中國(guó)復(fù)合管的市場(chǎng)分析,其消費(fèi)規(guī)模有著良好增長(zhǎng)趨勢(shì),復(fù)合管市場(chǎng)有著十分良好的市場(chǎng)潛力與成長(zhǎng)性。而脫模裝置也隨著復(fù)合管的普及也同樣得到了迅速的發(fā)展。復(fù)合管因?yàn)槠涠喾N且強(qiáng)大的功能早已被應(yīng)用于電力、石油、化工、冶金、采礦、污水處理等工業(yè)領(lǐng)域,并廣受好評(píng)。復(fù)合管是一種十分廣的統(tǒng)稱,根據(jù)其制造工藝的不同,復(fù)合管有著許許多多的類型,其特性也是天差地別,這也使得復(fù)合管具有其特殊性,不同的復(fù)合管可能有著完全相反的優(yōu)缺點(diǎn),這使得復(fù)合管市場(chǎng)有著很大可塑性。市場(chǎng)可以通過不同的需求、需求量來選擇符合市場(chǎng)需要的復(fù)合管。因此復(fù)合管的是一種民間企業(yè)使用平凡、經(jīng)濟(jì)實(shí)惠的材料。而復(fù)合管脫模作為制作復(fù)合管的一個(gè)必要工藝過程,它的工藝質(zhì)量好壞將直接影響到復(fù)合管本身的好壞。因此復(fù)合管脫模裝置對(duì)于復(fù)合管來說是一種極為重要的工具。目前來看我國(guó)脫模裝置的脫模方式一般可分為兩種,一種是頂芯脫模裝置,一種是電車直接拉出,但這兩種脫模方式無論是哪種都有著難以控制脫模力和速度慢的問題。為了解決這一問題,當(dāng)代使用全自動(dòng)的脫模裝置來進(jìn)行脫模,脫模裝置有了許多的改進(jìn),如今自動(dòng)脫模裝置脫模的方式有液壓式脫模、鏈?zhǔn)矫撃?、螺旋式脫模。本次畢業(yè)設(shè)計(jì)是設(shè)計(jì)一款鏈?zhǔn)矫撃Qb置,此裝置對(duì)于脫模有著很好精度,能夠保證制造出的復(fù)合管有著良好的質(zhì)量。2第2章 脫模方案的確定2.1 總體脫模方案在復(fù)合管成型的過程中,首先是進(jìn)行纏繞式,將樹脂纖維纏繞至芯模上,然后再將復(fù)合管產(chǎn)品從芯膜上取出,整個(gè)過程需要有精確的力,來保證制造出來的產(chǎn)品能夠完好無損的被取出,需要控制好力度,應(yīng)根據(jù)產(chǎn)品的需要選擇相應(yīng)的電機(jī)。整個(gè)脫模的過程是首先轉(zhuǎn)動(dòng)芯模進(jìn)行纏繞,將調(diào)制好的樹脂纖維纏繞到芯膜上,這一過程的是通過芯模自轉(zhuǎn)將樹脂纖維纏到芯膜上,所要纏繞的細(xì)線要經(jīng)過張力控制器、預(yù)浸槽以及一個(gè)連著小車的吐絲嘴,細(xì)線穿過吐絲嘴,小車能夠沿著芯模軸移動(dòng)帶動(dòng)吐絲嘴移動(dòng),使得吐絲嘴帶著細(xì)線移動(dòng)讓細(xì)線能夠纏繞整個(gè)芯模(如圖2-1)。 當(dāng)芯模纏繞完成后通過烘干、固化使得纏繞的纖維固化成型。之后便要將芯模和固化纖維分離。一般來說,目前有三種方式使它們分離鏈傳動(dòng)的方式將芯模從中移即手動(dòng)脫模、機(jī)械式傳動(dòng)脫模、氣動(dòng)或液壓傳動(dòng)脫模。鏈條式脫模裝置屬于機(jī)械式脫模,該脫模裝置是利用鏈條傳動(dòng)提供的開模動(dòng)力,分型后塑件隨動(dòng)模一起移動(dòng),達(dá)到一定位置時(shí),脫模機(jī)構(gòu)被機(jī)床上固定不動(dòng)的擋架頂住,不在隨動(dòng)模移動(dòng),從而把塑件(玻璃鋼)從動(dòng)模上脫下來。該脫模方式較其他兩種脫模裝置具有脫模力大、生產(chǎn)效率高、使用與大批量生產(chǎn)等優(yōu)點(diǎn)。 圖2-1脫模過程32鏈傳動(dòng)是以鏈條為中間撓性件的嚙合傳動(dòng),它由裝在平行軸上的主、從動(dòng)鏈輪和繞在鏈輪上的鏈條所組成,并通過鏈條和鏈輪之間的嚙合來傳遞動(dòng)力。鏈傳動(dòng)兼有齒輪傳動(dòng)和帶傳動(dòng)的特點(diǎn),與齒輪傳動(dòng)相比,鏈傳動(dòng)較易安裝,成本低廉;遠(yuǎn)距離傳動(dòng)(中心距最大可達(dá)十多米)時(shí),其結(jié)構(gòu)要比齒輪傳動(dòng)輕便得多。與帶傳動(dòng)比較,鏈傳動(dòng)的平均傳動(dòng)比準(zhǔn)確、傳動(dòng)效率高、需要的張緊力小、壓軸力也小、結(jié)構(gòu)尺寸緊湊、能在低速重載下較好地工作、能適應(yīng)較惡劣環(huán)境如油污多塵和高溫等場(chǎng)合。因此,鏈條式脫模裝置具有成本低、操作方便、生產(chǎn)效率高、傳動(dòng)平穩(wěn)等優(yōu)點(diǎn)。此次設(shè)計(jì)的題目是180型復(fù)合管脫模裝置(脫模力為15t,長(zhǎng)度最大為2500mm),因此此次設(shè)計(jì)傳動(dòng)脫模機(jī)構(gòu)采用兩根鏈條(每根鏈條受力要均勻,脫模力均為7.5t)和四個(gè)鏈輪,在兩根鏈條之間連接移動(dòng)頭,采用兩個(gè)圓柱銷把移動(dòng)頭和兩根鏈條分別連接起來;采用圓柱銷連接、固定移動(dòng)頭和接頭。具體工作原理如下:電機(jī)通過鏈輪帶動(dòng)減速器,然后通過安裝在減速器上面的小鏈輪帶動(dòng)安裝在主傳動(dòng)軸上面的大鏈輪,使鏈輪以0.1m/s的速度做直線運(yùn)動(dòng),然后分別帶動(dòng)移動(dòng)頭和接頭使待脫模的制品向左運(yùn)動(dòng),當(dāng)制品運(yùn)動(dòng)到固定在機(jī)架上面的鑄鐵擋架和法蘭盤時(shí),制品表面的玻璃鋼管坯則被擋住,而管芯繼續(xù)以一定的速度在托輥上面向左移動(dòng),托輥采用絕緣性的軟材料聚氨酯,以保證管芯表面無損傷;而脫落后的管坯則保留在兩個(gè)支撐托架上面,從而達(dá)到脫模的目的。由于兩根鏈條帶動(dòng)移動(dòng)頭向左運(yùn)動(dòng)時(shí)路徑可能有一定的偏移,因此在機(jī)架上面安裝直線導(dǎo)輥,作為移動(dòng)頭的導(dǎo)向裝置,確保移動(dòng)頭做直線運(yùn)動(dòng),保證脫模精度。在脫模工藝中,為了防止模具損傷,保護(hù)芯模,提高脫模效率,經(jīng)常在脫模模具上面涂上一定的脫模劑。設(shè)計(jì)總裝圖如圖2-2。圖2-2脫模機(jī)簡(jiǎn)圖第3章 驅(qū)動(dòng)裝置的選擇3.1 電動(dòng)機(jī)的選擇電動(dòng)機(jī)主要是提供力的以供后續(xù)部件進(jìn)行工作,電動(dòng)機(jī)的選擇主要是根據(jù)所需要的力的大小來決定的。根據(jù)機(jī)械負(fù)載情況和生產(chǎn)工藝對(duì)電動(dòng)機(jī)的啟動(dòng)、制動(dòng)、反轉(zhuǎn)、調(diào)速等因素來確定電動(dòng)機(jī)的類型。根據(jù)負(fù)載轉(zhuǎn)矩、速度變化范圍和啟動(dòng)頻率程度等要求,考慮電動(dòng)機(jī)在工作時(shí)的升溫、過載和啟動(dòng)轉(zhuǎn)矩,在選擇電動(dòng)機(jī)時(shí)應(yīng)選擇比工作要求所需最大功率要大一些,這樣可以使電機(jī)在使用過程中有更長(zhǎng)的壽命,并且要在設(shè)計(jì)中確定冷卻方法,以保證電動(dòng)機(jī)能夠有良好的降溫。一般來說,負(fù)荷率通常選擇0.8-0.9。過大的的電動(dòng)機(jī)功率會(huì)造成效率的低下,且成本上升。3.1.1 選擇電動(dòng)機(jī)的類型與結(jié)構(gòu)電動(dòng)機(jī)的類型和結(jié)構(gòu)形式應(yīng)該根據(jù)電源種類、工作條件、工作時(shí)長(zhǎng)及載荷的性質(zhì)、大小、啟動(dòng)性能等方面來進(jìn)行選擇。工業(yè)上一般采用三相交流電動(dòng)機(jī)。Y系列三相交流異步電動(dòng)機(jī)由于其結(jié)構(gòu)簡(jiǎn)單、價(jià)格低廉、維護(hù)方便等優(yōu)點(diǎn),在工業(yè)上應(yīng)用廣泛。在啟動(dòng)、制動(dòng)、反轉(zhuǎn)間隙和短時(shí)工作的場(chǎng)合,要求電動(dòng)機(jī)的轉(zhuǎn)動(dòng)慣量小和過載能力大。由于本次設(shè)計(jì)的脫模機(jī)在脫模剛開始時(shí),應(yīng)用液壓缸將芯模頂出一段距離,再靠鏈條傳動(dòng)拉動(dòng)芯模,這會(huì)導(dǎo)致前后速度不同,故選用調(diào)速功能。此次設(shè)計(jì)按照要求選擇使用YZD起重用多速三相異步電動(dòng)機(jī)。3.1.2 確定電動(dòng)機(jī)的轉(zhuǎn)速Y型電動(dòng)機(jī)的同步速率,根據(jù)查表可知250r/min,300r/min,750r/min,1000r/min和1500r/min等轉(zhuǎn)速。一般來說,電機(jī)同步轉(zhuǎn)速越高,磁極對(duì)數(shù)越少,外廓尺寸越小,其價(jià)格越低。當(dāng)工作轉(zhuǎn)速高時(shí),選擇高速的越經(jīng)濟(jì)。若工作要求轉(zhuǎn)速不高卻選擇轉(zhuǎn)速高的,會(huì)導(dǎo)致總傳動(dòng)比增大,使傳動(dòng)裝置結(jié)構(gòu)復(fù)雜。在本次設(shè)計(jì)中,結(jié)合各個(gè)要求,保證脫模的質(zhì)量與高效,選擇轉(zhuǎn)速為300r/min和750r/min最好。3.1.3 確定電動(dòng)機(jī)的功率與型號(hào)電動(dòng)機(jī)功率的選擇是一個(gè)十分重要的環(huán)節(jié),若選擇功率太小會(huì)導(dǎo)致無法完成脫模工作,若是太大會(huì)損壞脫模,而且電動(dòng)機(jī)造價(jià)也高,沒有經(jīng)濟(jì)效益。而電動(dòng)機(jī)的功率大小,主要靠其載荷大小、工作時(shí)間長(zhǎng)短、發(fā)熱多少相掛鉤。對(duì)于長(zhǎng)期連續(xù)工作、載荷較穩(wěn)的機(jī)械,可以根據(jù)電動(dòng)機(jī)所需要的功率Pd來確定,不需要檢驗(yàn)電動(dòng)機(jī)發(fā)熱等問題。選擇時(shí)電動(dòng)機(jī)的額定功率應(yīng)該略大于電動(dòng)機(jī)所需要的功率Pd。設(shè)脫模速度為v=0.1m/s;采用兩根鏈條,脫模力15噸,每根鏈條平均受力為F=7.5噸,則工作機(jī)所需的有效功率為:PW=Fv/1000=75009.80.1=7.35kw電機(jī)所需的功率:Pd=PW/式子中,為傳動(dòng)裝置的總效率。=1322式子中1、2分別為鏈傳動(dòng)和滾動(dòng)軸承傳動(dòng)效率。根據(jù)機(jī)械設(shè)計(jì)手冊(cè)可以知道 1=0.96,2=0.98,則總效率為:=0.960.960.960.980.98=0.8則電動(dòng)機(jī)的功率為:Pd=7.350.85=8.64kw綜上所述,查閱機(jī)械設(shè)計(jì)手冊(cè)可知道電動(dòng)機(jī)額定功率Pd=11kw。根據(jù)機(jī)械設(shè)計(jì)手冊(cè),可知道適合的Y型電動(dòng)機(jī)的型號(hào)為Y180L-8起重用多速三相異步電動(dòng)機(jī),其同步轉(zhuǎn)速有750r/min,對(duì)應(yīng)的功率為11kw。綜上,可將電機(jī)數(shù)據(jù)參數(shù)記于下表3-1,電機(jī)外形如圖3-1:表3-1電動(dòng)機(jī)數(shù)據(jù)電動(dòng)機(jī)型號(hào)額定功率/KW同步轉(zhuǎn)速/(r/min)滿載轉(zhuǎn)速/(r/min)Y180L-811.0750730圖3-1電動(dòng)機(jī)3.2 傳動(dòng)比的分配在本次設(shè)計(jì)中,傳動(dòng)比的分配是一項(xiàng)重要的環(huán)節(jié)。傳動(dòng)比分配若是不合理,那么會(huì)造成結(jié)構(gòu)尺寸大、相關(guān)尺寸不協(xié)調(diào)、成本高、安裝不了等問題。因此,在分配傳動(dòng)比時(shí)要注意傳動(dòng)比分配原則。(1)傳動(dòng)的每級(jí)傳動(dòng)比應(yīng)在(2-4)的范圍內(nèi)。(2)各級(jí)傳動(dòng)比應(yīng)該使傳動(dòng)裝置尺寸協(xié)調(diào)、結(jié)構(gòu)均勻、不發(fā)生干擾。(3)當(dāng)減速器內(nèi)的齒輪采用油池浸潤(rùn)使,為了使各大齒輪浸油深度合理,各級(jí)大齒輪直徑相差不應(yīng)過大,以避免低速級(jí)大齒輪浸油過深而造成損失。此次設(shè)計(jì)的方案中采用兩條鏈,主動(dòng)軸和從動(dòng)軸上安裝相同的的鏈輪,所選的滾子鏈為20A,鏈截距為P=31.75mm,鏈輪齒數(shù)為z=25,故可得鏈輪的轉(zhuǎn)速n4,n5和主從動(dòng)軸的傳動(dòng)比i4如下:n4=n5=(1501000v)/(z1p)=(1501000v)/(2531.75)=18.9r/mini4=1由此可知電動(dòng)機(jī)到從動(dòng)軸上鏈輪的總傳動(dòng)比為:i=n/n4=730/18.9=38.6電動(dòng)機(jī)與減速器、減速器與主傳動(dòng)軸之間的傳動(dòng)均為鏈傳動(dòng),傳動(dòng)比也相同,結(jié)合鏈傳動(dòng)i7,故可取傳動(dòng)比i1=i2=3,由此可知減速器的減速比為:i2=i/(i1i3i4)=38.6/(133)=4.33.3 傳動(dòng)裝置對(duì)的運(yùn)動(dòng)和參數(shù)計(jì)算3.3.1 各軸的轉(zhuǎn)速計(jì)算電動(dòng)機(jī)上傳動(dòng)軸的轉(zhuǎn)速:減速器上的兩個(gè)傳動(dòng)軸的轉(zhuǎn)速n2,n3,分別為:n2=n1/i1=750/3=250r/minn3=n2/i2=250/4.3=58r/min主傳動(dòng)軸和從傳動(dòng)軸的轉(zhuǎn)速n4,n5分別如下:n4=n5=n3/i3=58/3=19r/min3.3.2 各軸輸入功率計(jì)算P1=P2=8.64kwP2=P11=8.640.96=8.3kwP3=P2=8.3kwP4=P3 12=8.30.960.98=7.8kwP5=P412=7.80.960.98=7.3kw3.3.3 各軸的輸入轉(zhuǎn)矩計(jì)算T1=9550P1/1=95508.64/750=110NmT2=9550P2/2=95508.3/250=317NmT3=9550P3/2=95508.3/58=1366NmT4=9550P4/4=95507.8/19=3920NmT5=9550P5/5=95507.3/19=3669Nm記錄數(shù)據(jù)見下表3-2表3-2軸的轉(zhuǎn)速表軸號(hào)轉(zhuǎn)速n/(r/min)功率P(kw)轉(zhuǎn)矩T/(Nm)17508.6411022508.33173588.313664197.839205197.336693.4 鏈傳動(dòng)設(shè)計(jì)方案鏈傳動(dòng)是在裝于平行軸上的鏈輪之間,以鏈條作為繞性曳引元件的一種嚙合傳動(dòng)。與帶傳動(dòng)、齒輪傳動(dòng)相比鏈傳動(dòng)的優(yōu)點(diǎn)是:沒有彈性滑動(dòng)和打滑,能保證準(zhǔn)確的平均傳動(dòng)比,傳動(dòng)效率高,軸的壓力較小,傳動(dòng)功率大,過載能力強(qiáng),能在低速重載下較好工作,能適應(yīng)惡劣環(huán)境(如多塵、油污、腐蝕和剛強(qiáng)度場(chǎng)合)。傳動(dòng)鏈的主要類型有滾子鏈和齒形鏈。本次設(shè)計(jì)中選用的是滾子鏈。滾子鏈主要由內(nèi)鏈板、外鏈板、銷軸、套筒和滾子五部分組成。如圖3-2 圖3-2滾子鏈3.4.1鏈傳動(dòng)的設(shè)計(jì)約束鏈傳動(dòng)中的多種失效形式是制約鏈傳動(dòng)設(shè)計(jì)的約束條件。所以鏈傳動(dòng)的承載能力,應(yīng)根據(jù)其主要的失效形式,由滿足相應(yīng)的約束條件來確定。鏈傳動(dòng)的主要失效形式: (1)鉸鏈磨損。鏈條在進(jìn)入嚙合和推出嚙合時(shí),銷軸和套筒之間存在相對(duì)滑動(dòng),在不能保證充分潤(rùn)滑的條件下,將引起鉸鏈的磨損。磨損導(dǎo)致鏈輪節(jié)距的增加,鏈與鏈輪的嚙合點(diǎn)外移,最終將導(dǎo)致跳齒或脫鏈而使傳動(dòng)失效。(2)鏈的疲勞破壞。由于鏈在傳動(dòng)過程中所受的載荷不斷變化,因而鏈在變應(yīng)力的狀態(tài)下工作,經(jīng)過一定的循環(huán)次數(shù)后鏈板產(chǎn)生疲勞斷裂或滾子表面產(chǎn)生疲勞點(diǎn)蝕和疲勞裂紋。在潤(rùn)滑良好和設(shè)計(jì)正確的情況下,疲勞強(qiáng)度是決定鏈傳動(dòng)工作能力的主要因素。(3)多次沖擊破斷。工作中由于鏈條反復(fù)啟動(dòng)、制動(dòng)、反轉(zhuǎn)或受重復(fù)沖擊載荷時(shí)承受較大的動(dòng)載荷,經(jīng)過多次沖擊,滾子、套筒和銷軸最后產(chǎn)生沖擊斷裂。(4)膠合。由于套筒和銷軸之間存在相對(duì)運(yùn)動(dòng),在變載荷的作用下,潤(rùn)滑油膜難以形成,當(dāng)轉(zhuǎn)速很高時(shí),使套筒和銷軸間發(fā)生金屬直接接觸而產(chǎn)生很大的摩擦力,其產(chǎn)生的熱量將導(dǎo)致套筒和銷軸的膠合。(5)過載拉斷。在低速重載的傳動(dòng)中或是鏈突然受到很大的過載時(shí),鏈條靜力拉斷,承載能力受到鏈條元件的靜拉力強(qiáng)度限制。(6)鏈輪輪齒的磨損或塑性變形。在滾子鏈傳動(dòng)中,鏈輪輪齒磨損或塑性變形超過一定量后,鏈條的工作壽命明顯下降??刹捎眠m當(dāng)?shù)牟牧虾蜔崽幚韥斫档推淠p量和塑性變形。 圖3-3 滾子鏈傳動(dòng)功率曲線圖3-3為滾子鏈傳動(dòng)為滾子鏈傳動(dòng)的額定功率曲線,它是將在特定的條件下由實(shí)驗(yàn)得到的極限功率曲線作了一些修改而得到的。特定條件是指Z1=19;L=100p;單排鏈兩輪安裝在平行的水平軸上,兩鏈輪共面;載荷平穩(wěn);按照推薦的潤(rùn)滑方式潤(rùn)滑工作壽命為15000小時(shí);鏈輪因磨損而引起的相對(duì)伸長(zhǎng)量不超過3%。3.4.2鏈條的設(shè)計(jì)(1)確定鏈輪齒數(shù)和速比鏈輪齒數(shù)的多少對(duì)傳動(dòng)的平穩(wěn)性和使用壽命有很大的影響。小鏈輪齒數(shù)的選擇應(yīng)適中。若小鏈輪齒數(shù)過少,運(yùn)動(dòng)速度的不均勻性和動(dòng)載荷都會(huì)很大;鏈輪在進(jìn)入和退出嚙合時(shí),相對(duì)轉(zhuǎn)角增大,磨損增加,沖擊和功率耗損也增大。小鏈輪齒數(shù)也不宜過多。如Z1選得太大,大鏈輪齒數(shù)則將更大,除了增大傳動(dòng)尺寸和質(zhì)量外,也會(huì)因鏈條節(jié)距伸長(zhǎng)而發(fā)生脫鏈,最終導(dǎo)致降低使用壽命。一般小鏈輪的齒數(shù)z1可根據(jù)傳動(dòng)比按表3-3選取表3-3小鏈輪傳動(dòng)比傳動(dòng)比i1234456齒數(shù)Z127312533172117由于設(shè)計(jì)的鏈傳動(dòng)的傳動(dòng)比為3,故可選鏈輪的齒數(shù)Z1=27,Z2=81。(2) 確定計(jì)算功率表3-4鏈條傳動(dòng)載荷情況電動(dòng)機(jī)有流體結(jié)構(gòu)無流體結(jié)構(gòu)平穩(wěn)的傳動(dòng)1.01.01.2稍有沖擊的傳動(dòng)1.31.21.4有大沖擊的傳動(dòng)1.51.41.7由于設(shè)計(jì)的脫模裝置由電動(dòng)機(jī)拖動(dòng),稍有沖擊,所以根據(jù)表3-4可以選擇KA=1.3,計(jì)算功率為PC=KAP=1.38.64=11kw。(2) 初選中心距0,取定鏈節(jié)數(shù)Lp中心距的大小對(duì)傳動(dòng)有很大影響。中心距小時(shí),鏈節(jié)數(shù)較少,鏈輪一定時(shí),單位時(shí)間內(nèi)每一鏈節(jié)的應(yīng)力變化次數(shù)和屈伸次數(shù)增多,因此鏈的疲勞和磨損增加。中心距大的時(shí)候,鏈節(jié)數(shù)增多,吸振能力增大,使用壽命增加。但中心距太大的話,會(huì)發(fā)生顫動(dòng)現(xiàn)象,影響運(yùn)動(dòng)的平穩(wěn)性。初選中心距為0=(30-50)p由于兩鏈輪的實(shí)際中心距比較大,故選擇0=50pLp=20/p+(z1+z2)/2+(z2-z1)/22p/0計(jì)算可得Lp=155取Lp=156節(jié)。(3) 選擇型號(hào),確定鏈節(jié)距和排數(shù)鏈節(jié)距的大小直接決定了鏈條的尺寸、重量和承載能力而且也將影響鏈傳動(dòng)的運(yùn)動(dòng)不均勻性,產(chǎn)生沖擊、振動(dòng)和噪聲。為了既保證鏈傳動(dòng)有足夠的承載能力又減小沖擊、振動(dòng)和噪聲,設(shè)計(jì)時(shí)應(yīng)盡量選用較小的鏈節(jié)距。在高速、重載時(shí),宜用小節(jié)距多排練;低速、重載時(shí),宜用大節(jié)距排數(shù)較少的鏈。小鏈輪齒系數(shù)KZ=1.34, KL=1.09, 選擇單排鏈有KP=1.0所需傳動(dòng)的功率為P0=PC/KZKLKP 計(jì)算得P0=7.5kw根據(jù)要求查看機(jī)械設(shè)計(jì)指導(dǎo)書選擇滾子鏈的型號(hào)為24B,鏈節(jié)距為38.1mm,單排鏈。(4)確定鏈長(zhǎng)和中心距鏈長(zhǎng): L=Lpp/1000=15638.1/1000=5.9m中心距: 計(jì)算得到中心距a=2726mm,符合設(shè)計(jì)要求。中心距的調(diào)整一般應(yīng)該大于2pa=0.003a=0.0032726=8mm實(shí)際中心距: a=a-a=2726-8=2718mm(5)求實(shí)際軸的壓力鏈速: /s工作壓力: F=1000P/v=10007.5/0.32=23437N工作平穩(wěn),取壓軸力系數(shù) KQ=1.2軸上壓力: KQ=1.223437=28125N(6)校核靜拉力對(duì)于v15所以推力合格。(1)缸筒長(zhǎng)度L活塞桿的行程可據(jù)國(guó)標(biāo)GB/T2349-1980選擇第一系列中的320mm。缸筒長(zhǎng)度是由各工作部件的行程長(zhǎng)度及其結(jié)構(gòu)上的要求共同確定的,包括活塞最大工作行程1、活塞寬度B、最小導(dǎo)向長(zhǎng)度H及特殊要求其他長(zhǎng)度C等。最終設(shè)計(jì)的液壓缸長(zhǎng)度L為740mm。(2)缸筒壁厚的強(qiáng)度校核設(shè)計(jì)中缸筒壁厚按照材料力學(xué)知識(shí)知道,當(dāng)時(shí),強(qiáng)度校核公式為:式中,為缸筒材料45鋼。,故缸筒壁厚強(qiáng)度合格。(1) 活塞桿直徑強(qiáng)度校核活塞桿只受軸向推力或拉力的情況下,其直徑強(qiáng)度按下式進(jìn)行強(qiáng)度校核: 因此活塞桿強(qiáng)度合格。 圖3-7液壓缸3.7 主零部件的設(shè)計(jì)3.7.1機(jī)構(gòu)設(shè)計(jì)準(zhǔn)則機(jī)架的設(shè)計(jì)主要應(yīng)保證剛度、強(qiáng)度和穩(wěn)定性(1)剛度:床身的剛度決定著機(jī)床生產(chǎn)率和生產(chǎn)精度,是設(shè)計(jì)大多數(shù)機(jī)架工作能力的主要準(zhǔn)則。(2)強(qiáng)度:強(qiáng)度是評(píng)定重載機(jī)架工作性能的基本準(zhǔn)則。機(jī)架的強(qiáng)度應(yīng)根據(jù)機(jī)器在運(yùn)轉(zhuǎn)過程中可能發(fā)生最大載荷或安全裝置所能傳遞的最大載荷來校核其靜強(qiáng)度。(3)穩(wěn)定性:機(jī)架受壓結(jié)構(gòu)及受壓彎結(jié)構(gòu)都存在失穩(wěn)問題。穩(wěn)定性是保證機(jī)架正常工作的基本條件。機(jī)架設(shè)計(jì)一般要求:(1)在滿足強(qiáng)度和剛度的前提下,機(jī)架的重量應(yīng)要求輕、成本低。(2)抗振性好。把受迫振動(dòng)幅限制在允許范圍內(nèi)。(3)溫度場(chǎng)分布合理,熱變形對(duì)精度的影響小。(4)結(jié)構(gòu)設(shè)計(jì)合理,工藝性良好,便于制造、焊接和機(jī)械加工。(5)機(jī)構(gòu)力求便于安裝與調(diào)整,方便修理和更換零部件。(6)有導(dǎo)軌的機(jī)架要求導(dǎo)軌面受力合理,耐磨性良好。(7)造型好,使之即使用經(jīng)濟(jì),又美觀大方。機(jī)架的材料及熱處理:多數(shù)機(jī)架形狀比較復(fù)雜,故一般都采用鑄造,由于鑄鐵的鑄造性能好、價(jià)廉和吸振能力強(qiáng),所以應(yīng)用廣泛。本次設(shè)計(jì)采用鑄鋼機(jī)架。鑄造碳鋼:由于鋼水的流動(dòng)性差,在鑄型中凝固冷卻時(shí)體收縮和線收縮較大,故不宜設(shè)計(jì)復(fù)雜形狀的鑄件。鑄鋼的吸振性低于鑄鐵,但其彈性模量較大,強(qiáng)度也比鑄鐵高,故鑄鋼機(jī)架用于受力較大的機(jī)架。鑄鋼機(jī)架的熱處理鑄鋼件一般都要經(jīng)過熱處理,熱處理的目的是為了消除鑄造內(nèi)應(yīng)力和改善力學(xué)性能。鑄鋼機(jī)架的熱處理方法一般有正火加回火,退火,高溫?cái)U(kuò)散退火和焊補(bǔ)后回火。結(jié)合本次設(shè)計(jì),形狀比較復(fù)雜,對(duì)力學(xué)性能要求也較高,所以我們采用正火加回火。3.7.2機(jī)架結(jié)構(gòu)設(shè)計(jì)與緊固連接根據(jù)本次設(shè)計(jì)制品結(jié)構(gòu)尺寸,設(shè)計(jì)機(jī)架的長(zhǎng)度為6435m,寬度為1834mm,高度為764mm,機(jī)架的壁厚為30mm。機(jī)架結(jié)構(gòu)設(shè)計(jì)中必須保證機(jī)架與其上的零部件的連接以及機(jī)架與地基之間連接的強(qiáng)度和剛度,影響連接剛度的主要因素是:連接處的結(jié)構(gòu),連接螺栓的數(shù)量,大小及其排列形式,墊片及其結(jié)合面的機(jī)加工表面精度等。在本設(shè)計(jì)中共使用了13個(gè)地腳螺栓來加強(qiáng)機(jī)架的穩(wěn)定性,并且在機(jī)架內(nèi)部還安放了14個(gè)肋板以增強(qiáng)機(jī)架的強(qiáng)度,其中6個(gè)是水平肋板,8個(gè)豎直肋板。此外為了加強(qiáng)水平肋板的承載能力也為了提升整個(gè)機(jī)架的剛度,在肋板處還相應(yīng)的設(shè)置了肋條。機(jī)架三視圖如下圖示: 圖3-7機(jī)架三視視圖3.7.3 托輥的設(shè)計(jì)托輥是脫模裝置中重要的零部件,它的作用是用于支撐從管坯中脫離出來的芯模,防止芯模因重力作用掉落并遭到破壞,起到保護(hù)芯模的作用。故設(shè)計(jì)中,托輥采用絕緣性的軟材料,防止芯模在托輥上移動(dòng)時(shí)出現(xiàn)刮痕。該設(shè)計(jì)中,托輥的材料選用聚酯胺。3.7.4 直線的導(dǎo)輥設(shè)計(jì)導(dǎo)輥的是一種導(dǎo)向裝置,保證零部件按照一定的方向往復(fù)運(yùn)動(dòng),其具有如下特點(diǎn):(1)磨耗少能長(zhǎng)時(shí)間維持精度;(2)大幅降低電機(jī)所需驅(qū)動(dòng)力;(3)可同時(shí)承受上下左右方向的負(fù)荷;(4)組裝容易并具互換性;(5)潤(rùn)滑構(gòu)造簡(jiǎn)單。該設(shè)計(jì)中采用兩根鏈條傳動(dòng),兩根鏈條分別通過圓柱銷和移動(dòng)頭連接起來,移動(dòng)頭通過螺釘和接頭連接起來,進(jìn)而通過接頭帶動(dòng)待脫模的制品往左運(yùn)動(dòng)。由于兩根鏈條帶動(dòng)移動(dòng)頭向左運(yùn)動(dòng)時(shí)路徑可能有一定的偏移,因此在機(jī)架上面安裝直線導(dǎo)輥,作為移動(dòng)頭的導(dǎo)向裝置,確保移動(dòng)頭做直線運(yùn)動(dòng),保證脫模精度。第四章 標(biāo)準(zhǔn)件的設(shè)計(jì)本次脫模機(jī)的設(shè)計(jì)中用到的連接方式主要有螺紋連接、鍵連接和焊接。設(shè)計(jì)中用到的螺紋連接主要是螺栓連接和螺釘連接。4.1 螺栓的選擇螺栓連接的特點(diǎn)是用于連接兩個(gè)較薄的零件。在被連接件上開有通孔,插入螺栓后在螺栓的另一端擰上螺母,采用不同螺栓的釘桿與孔之間有間隙,通孔的加工要求較低,結(jié)構(gòu)簡(jiǎn)單、裝拆方便,應(yīng)用廣泛。采用鉸制孔螺栓時(shí),孔與螺桿常用過渡配合。這種連接能精確固定被連接件的相對(duì)位置,適用于承受橫向載荷,但孔的加工精度要求高。螺釘連接是將螺栓或螺釘直接擰入被連接件的螺紋孔中,不用螺母。結(jié)構(gòu)比雙頭螺柱簡(jiǎn)單、緊湊。用于兩個(gè)連接件中一個(gè)較厚,但不需要經(jīng)常拆卸,以免螺紋孔損壞。設(shè)計(jì)中使用的主要是六角頭螺栓一全螺紋-C級(jí)以及十字沉頭螺釘H型等。4.2 鍵的選擇軸轂連接主要是使軸上零件與軸進(jìn)行周向固定以傳遞運(yùn)動(dòng)和轉(zhuǎn)矩。常用的軸轂連接有鍵連接、花鍵連接和過盈連接。鍵連接按用途分為三種:普通平鍵、導(dǎo)鍵和滑鍵。鍵的兩側(cè)是工作面,工作時(shí)靠鍵同側(cè)面的擠壓來傳遞運(yùn)動(dòng)和轉(zhuǎn)矩。鍵的上表面和輪轂的鍵槽底面間留有間隙。平鍵連接具有機(jī)構(gòu)簡(jiǎn)單、裝拆方便、對(duì)中性好等優(yōu)點(diǎn)。因此得到廣泛應(yīng)用本次設(shè)計(jì)使用的主要是普通平鍵中的A型鍵。鍵的類型可根據(jù)連接的結(jié)構(gòu)特點(diǎn)、使用要求和工作條件來選定。鍵的截面尺寸(鍵寬b和鍵高h(yuǎn))按軸的直徑d由標(biāo)準(zhǔn)中選定;鍵的長(zhǎng)度L可根據(jù)輪轂長(zhǎng)確定,輪轂長(zhǎng)度一般選取(1.52)d,鍵長(zhǎng)等于或略小于輪轂的長(zhǎng)度,此外鍵的長(zhǎng)度還要符合標(biāo)準(zhǔn)規(guī)。表4-1 鍵的選擇軸徑d1722 2230 3038 3844 4450 5058 5865 6575 7585 8595 95100 鍵寬b6 8 10 12 14 16 18 20 22 25 28鍵高h(yuǎn) 6 7 8 9 10 11 12 13 14 14 164.3聯(lián)軸器的選擇聯(lián)軸器是用來連接兩軸,使之一起轉(zhuǎn)動(dòng)并傳遞轉(zhuǎn)矩的部件。聯(lián)軸器連接的兩軸只有在機(jī)械停車后,通過拆卸的方法才能使兩軸分離。聯(lián)軸器可分為剛性聯(lián)軸器、撓性聯(lián)軸器和安全聯(lián)軸器三大類。本次設(shè)計(jì)使用的是剛性聯(lián)軸器。剛性聯(lián)軸器無位移補(bǔ)償能力,用在被連接兩軸要求嚴(yán)格對(duì)中以及工作中無相對(duì)位移之處。剛性聯(lián)軸器中應(yīng)用較多的是套筒式、夾殼式、凸緣式等幾種類型,而凸緣式是應(yīng)用最廣的剛性聯(lián)軸器。如圖示,凸緣聯(lián)軸器是用兩個(gè)由兩個(gè)帶凸緣的半聯(lián)軸器用一組螺栓連接而成。凸緣聯(lián)軸器已經(jīng)標(biāo)準(zhǔn)化,按軸徑、轉(zhuǎn)矩及轉(zhuǎn)速選定凸緣聯(lián)軸器型號(hào),必要時(shí)應(yīng)對(duì)連接兩個(gè)半聯(lián)軸器的螺栓進(jìn)行強(qiáng)度校核。設(shè)計(jì)中使用的是凸緣聯(lián)軸器GY6和GY8。 圖4-1 凸緣連軸器外形4.4滾動(dòng)軸的選則滾動(dòng)軸承是現(xiàn)代機(jī)器中廣泛應(yīng)用的部件之一,它已標(biāo)準(zhǔn)化。滾動(dòng)體是滾動(dòng)軸承的核心元件,當(dāng)內(nèi)外圈相對(duì)轉(zhuǎn)動(dòng)時(shí),滾動(dòng)體即在內(nèi)外圈的滾道間滾動(dòng)。內(nèi)外圈的滾道多為凹槽形,它起著降低開題報(bào)告畢業(yè)設(shè)計(jì)(論文)題目180型復(fù)合管脫模裝置(鏈條式)設(shè)計(jì)學(xué)生姓名 專業(yè)班級(jí)指導(dǎo)教師姓名 職稱1、 目的及意義(含背景及發(fā)展)目的及意義:本次設(shè)計(jì)是設(shè)計(jì)一個(gè)180型復(fù)合管脫模裝置。20世紀(jì)80年代以來,隨著國(guó)民經(jīng)濟(jì)的增長(zhǎng),建材行業(yè)發(fā)展日新月異,我國(guó)對(duì)于模具工業(yè)的要求越來越高,對(duì)于復(fù)合材料的研究也愈發(fā)深入。復(fù)合型材料能夠幫助我們優(yōu)化一些材料,使原材料變得重量更輕,強(qiáng)度更大。復(fù)合管是指在一個(gè)電子管的殼內(nèi)裝有兩個(gè)以上電極系統(tǒng),每個(gè)電極系統(tǒng)各自獨(dú)立通過電子流,實(shí)現(xiàn)各種功能,這種電子管就是復(fù)合管。復(fù)合管根據(jù)其功率大小分類一般可分為兩類,一種是普通型復(fù)合管,這種復(fù)合管內(nèi)部無需保護(hù)電路,一般像2W以下的中小型復(fù)合管都屬此類;另一種是內(nèi)不帶電路保護(hù)的復(fù)合管,一般大功率的復(fù)合管就是此類。復(fù)合管根據(jù)其材料也可分為多種:如鋁塑復(fù)合管,此復(fù)合管具有較好的保溫功能,內(nèi)外壁不易腐蝕,因內(nèi)壁光滑,對(duì)流體阻力小,又因?yàn)榭梢噪S意彎曲,所以安裝施工方便,一般作為供水管道;陶瓷復(fù)合管是采用高技術(shù)生產(chǎn)工藝自蔓高溫離合合成法制造,此管由內(nèi)而外分別由剛玉陶瓷、過渡層、鋼三層組成,此復(fù)合管擁有良好的耐磨、耐熱、耐蝕以及抗機(jī)械沖擊與熱沖擊、可焊性好等綜合綜合性能。是輸送顆粒物料、磨削、腐蝕性介質(zhì)等物質(zhì)的理想型材料。不銹鋼復(fù)合管則是由不銹鋼與碳素結(jié)構(gòu)鋼兩種材料復(fù)合而成的新材料,具有不銹鋼抗腐蝕耐磨的特性。由于復(fù)合管的各項(xiàng)特性,使復(fù)合管在各個(gè)領(lǐng)域中有著舉重若輕的地位。脫模,是制作復(fù)合管的一道重要工序。根據(jù)所需產(chǎn)品的不同,脫模所需要的各項(xiàng)指標(biāo)也會(huì)相應(yīng)不同。纏繞成型是復(fù)合管脫模的核心,纏繞成型大致分為三種方式:1.干法纏繞:選用預(yù)浸紗布(或布帶),在纏繞機(jī)上經(jīng)加熱軟化至粘流后纏繞到芯模上。2.濕法纏繞:將無捻紗布(或布帶)浸漬樹脂膠液后直接纏到芯膜上。3.半干法纏繞:將無捻粗布(或布帶)浸漬樹脂膠液,預(yù)烘后隨即纏繞到芯模上。根據(jù)此次設(shè)計(jì)要求,采用濕法纏繞成型的方法最為合理,這種方法工藝過程迅速、自動(dòng)化程度高、可以減少樹脂含量、減少纖維浪費(fèi)、纖維含量高、結(jié)構(gòu)性高等優(yōu)點(diǎn)。在脫模方面使用機(jī)械脫模脫模對(duì)的方法,脫模力主要由脫模力主要由液壓傳動(dòng)活塞桿提供。牽引芯模小車的傳動(dòng)方式主要有鏈條傳動(dòng),螺旋傳動(dòng)及卷?yè)P(yáng)機(jī)傳動(dòng)三種。螺旋傳動(dòng)傳動(dòng)平穩(wěn),但由于傳動(dòng)距離長(zhǎng),螺桿剛度難以保證,卷?yè)P(yáng)機(jī)操作起來相對(duì)其他兩種比較復(fù)雜。鏈條傳動(dòng)雖然速度波動(dòng)較其他兩種大,但其設(shè)計(jì)操作方便,綜合分析考慮最終選擇了鏈條式傳動(dòng)方式。2、 基本內(nèi)容及技術(shù)方案課題研究的基本內(nèi)容:1. 了解復(fù)合管制造工藝過程;2. 根據(jù)復(fù)合管的型號(hào)計(jì)算選取鏈條式脫模機(jī)器所需要的動(dòng)力,以此來選去相應(yīng)的動(dòng)力系統(tǒng);設(shè)計(jì)傳動(dòng)機(jī)構(gòu)、執(zhí)行機(jī)構(gòu)、輔助機(jī)構(gòu)等(主要是電機(jī)、減速箱、鏈條輪的設(shè)計(jì)、軸的設(shè)計(jì)及機(jī)架的設(shè)計(jì));3. 綜合所學(xué)知識(shí)對(duì)設(shè)計(jì)的裝置的主要零部件進(jìn)行分析校核及對(duì)總體工藝分析(主要為鏈條和鏈輪的校核,軸的校核,液壓缸缸筒和活塞桿的校核);4. 運(yùn)用計(jì)算機(jī)軟件進(jìn)行圖紙的繪畫,畫出裝配圖、零件圖、設(shè)計(jì)設(shè)備總裝圖。技術(shù)方案:了解復(fù)合管成型工藝過程,通過復(fù)合管型號(hào)查找書籍算出脫模時(shí)所需要的各項(xiàng)條件是什么。選擇出相適應(yīng)的齒輪型號(hào)、減速箱型號(hào)、鏈條輪、電機(jī)等零件。了解濕法纏繞工藝流程。脫模的基本過程為:電動(dòng)機(jī)帶動(dòng)液壓泵旋轉(zhuǎn),油液溢流閥、調(diào)壓閥、換向閥后進(jìn)入液壓缸,推動(dòng)活塞桿向左運(yùn)動(dòng),活塞桿推動(dòng)芯模?;嫌协h(huán)形脫模卡圈,卡圈擋住模胚而芯模從中通過。芯模推出卡圈后可以和移動(dòng)頭上的固定裝置銷接,這樣移動(dòng)頭就可以拉住芯模往左前行。在活塞桿的推力和移動(dòng)頭的拉力共同作用下即可完成脫模。脫模結(jié)束后,換向閥改變位置即可實(shí)現(xiàn)液壓油從液壓缸的左端進(jìn)油,活塞桿向右返回原位。移動(dòng)頭的運(yùn)動(dòng)是通過電機(jī)旋轉(zhuǎn)經(jīng)減速箱降速后帶動(dòng)鏈輪鏈條,將電機(jī)的旋轉(zhuǎn)運(yùn)動(dòng)轉(zhuǎn)化為鏈條的橫向直線移動(dòng),而移動(dòng)頭是固定連接在鏈條上的,因而電機(jī)的轉(zhuǎn)動(dòng)帶動(dòng)移動(dòng)頭的橫向直線移動(dòng)。改變電機(jī)的旋轉(zhuǎn)方向即可實(shí)現(xiàn)移動(dòng)頭的向右返回運(yùn)動(dòng)。設(shè)計(jì)中還需要考慮芯模沿自身軸線方向上的固定,可以通過固定小車上的弧形擋圈和安裝在導(dǎo)軌上的多個(gè)弧形拖輪實(shí)現(xiàn)。濕法纏繞成型對(duì)的基本過程為:膠液配置集束烘干絡(luò)紗紗膠紗錠浸膠紗團(tuán)張力控制張力控制縱、環(huán)向纏繞加熱粘流芯模制造縱、環(huán)向纏繞固化脫模打磨噴漆成品3、 進(jìn)度安排1)第14周:查閱相關(guān)文獻(xiàn)資料,明確研究?jī)?nèi)容,了解研究所需專業(yè)知識(shí)。確定方案,完成開題報(bào)告。2)第512周:在現(xiàn)有的基本條件下,定期和指導(dǎo)老師聯(lián)系,獨(dú)立完成畢業(yè)論文初稿(10000字以上),以及裝配圖重要零部件圖初稿,交予指導(dǎo)老師審閱。3)第1314周: 根據(jù)指導(dǎo)老師修改意見修改設(shè)計(jì),確認(rèn)無誤后根據(jù)標(biāo)準(zhǔn)畢業(yè)論文格式打印論文,交予指導(dǎo)老師再次審閱。4)第15周: 通過老師評(píng)定,畢業(yè)設(shè)計(jì)論文定稿,畢業(yè)設(shè)計(jì)論文要求裝訂。5)第16周:準(zhǔn)備畢業(yè)論文答辯。資料來源:文章名:Design and thermal analysis of plastic injection mould書刊名:Journal of Materials Processing Technology 171 (2006)作 者:S.H.Tang,Y.M.Kong,頁(yè) 碼:P2P6文 章 譯 名: 塑料注射模設(shè)計(jì)與熱分析 AbstractThis paper presents the design of a plastic injection mould for producing warpage testing specimen and performing thermal analysis for the mould to accesson the effect of thermal residual stress in the mould. The technique, theory, methods as well as consideration needed in designing of plastic injection mould are presented. Design of mould was carried out using commercial computer aided design software Unigraphics, Version13.0. The model for thermal residual stress analysis due to uneven cooling of the specimen was developed and solved using a commercial nite element analysis software called LUSASAnalyst, Version13.5. The software provides contour plot of temperature distribution for the model and also temperature variation through the plastic injection molding cycle by plotting time response curves. The results show that shrinkage is likely to occur in the region near the cooling channels as compared to other regions. This uneven cooling effect at different regions of mould contributed to warpage.Introduction: The plastic industry is one of the fastest growing industries in the world and is listed as an industry with a number of billions of dollars. Almost every product used in daily life involves the use of plastic, most of which can be produced by injection molding . The injection molding process is known for its manufacturing process as a product that produces various forms and complex geometries at a lower cost . Injection molding process is a cycle process, the whole process is divided into four important stages, that is, mold filling, pressure protection, cooling and injection. In the injection molding process, the resin and appropriate additives are injected into the injection molding machine from the funnel to the heating / injection system of the injection molding machine . This is the mold filling stage in which the mold cavity fills the hot polymer melt that reaches the injection temperature. During the packing stage after mold cavity filling, more polymer melt is loaded into the cavity at higher pressure to compensate for the anticipated shrinkage due to polymer curing. The next is the cooling stage, in which the mold will cool down until enough rigid parts are popped out. The last stage is the ejection stage. At this stage, the mold is opened and the molding part is ejected. After that, the mold will be closed again and start the next cycle . Because the experience is mainly based on experience, including the repeated modification of the actual tools, so the process of designing and manufacturing the injection molded polymer components with high performance is very expensive. In the mold design task, due to the factors of injection and air pressure, usually, the special geometric structure in the core area for mold design is quite complicated.in order to design a mold, many important design factors must be taken into consideration. These factors are the size of the mold, the number and layout of the cavity, the heat flow system, the gate control system, the contraction and ejection system . In the thermal analysis of the mold, the main purpose is to analyze the effect of thermal residual stress or mould pressure on the size of the product. The thermal induced stress mainly occurs in the cooling stage of the injection molding parts, mainly due to the lower thermal conductivity and the temperature difference between the melt resin and the mold. The temperature of the cavity of the product in the process of cooling is unbalanced . In the cooling process, the closer to the cooling channel, the cooler can be cooled to a greater degree. The difference in temperature causes the hetero - contraction of the material, which leads to the thermal stress. Obvious thermal stress may cause deformation problems. Therefore, it is very important to simulate the thermal residual stress field in the cooling stage of the injection molding process. By understanding the distribution of the thermal residual stress, we can predict the deformation caused by the thermal residual stress. In this paper, an injection mold design is put forward for the production warpage test sample design: it can achieve the thermal analysis of the mold to achieve the effect of thermal residual stress on it.Methodology:2.1. Design of warpage testing specimen This section illustrates the design of the warpage testing specimen to be used in plastic injection mould. It is clear that warpage is the main problem that exists in product with thin shell feature. Therefore, the main purpose of the product development is to design a plastic part for determining the effective factors in the warpage problem of an injectionmoulded part with a thin shell. The warpage testing specimen is developed from thin shell plastics. The overall dimensions of the specimen were 120mmin length, 50mmin width and 1mmin thickness. The material used for producing the warpage testing specimen was acrylonitrile butadiene stylene (ABS) and the injection temperature, time and pressure were 210 C, 3 s and 60MPa, respectively. Fig. 1 shows the warpage testing specimen produced.2.2. Design of plastic injection mould for warpage testing specimen This section describes the design aspects and other considerations involved in designing the mould to produce warpage testing specimen. The material used for producing the plastic injection mould for warpage testing specimen was AISI 1050 carbon steel.Fig. 1. Warpage testing specimen produced.Four design concepts had been considered in designing of the mould including:i. Three-plate mould (Concept 1) having two parting line with single cavity. Not applicable due to high cost.ii. Two-plate mould (Concept 2) having one parting line with single cavity without gating system. Not applicable due to low production quantity per injection.iii. Two-plate mould (Concept 3) having one parting line with double cavities with gating and ejection system. Not applicable as ejector pins might damage the product as the product is too thin.iv. Two-plate mould (Concept 4) having one parting line with double cavities with gating system, only used sprue puller act as ejector to avoid product damage during ejection. In designing of the mould for the warpage testing specimen, the fourth design concept had been applied. Various design considerations had been applied in the design.Firstly, the mouldwas designed based on the platen dimension of the plastic injection machine used (BOY 22D). There is a limitation of the machine, which is the maximum area of machine platen is given by the distance between two tie bars. The distance between tie bars of the machine is 254 mm. Therefore, the maximum width of the mould plate should not exceed this distance. Furthermore, 4mm space had been reserved between the two tie bars and the mould for mould setting-up and handling purposes. This gives the final maximum width of the mould as 250 mm. The standard mould base with 250mm250mmis employed. The mould base is fitted to the machine using Matex clamp at the upper right and lower left corner of the mould base or mould platen. Dimensions of other related mould plates are shown in Table 1.Table 1:Based on the dimensions provided by standard mould set, the width and the height of the core plate are 200 and 250 mm, respectively. These dimensions enabled design of two cavities on core plate to be placed horizontally as there is enough space while the cavity plate is left empty and it is only fixed with sprue bushing for the purpose of feeding molten plastics. Therefore, it is only one standard parting line was designed at the surface of the product. The product and the runner were released in a plane through the parting line during mould opening.Standard or side gate was designed for this mould. The gate is located between the runner and the product. The bottom land of the gate was designed to have 20 slanting and has only 0.5mm thickness for easy de-gating purpose. The gate was also designed to have 4mm width and 0.5mm thickness for the entrance of molten plastic.In the mould design, the parabolic cross section type of runner was selected as it has the advantage of simpler machining in one mould half only, which is the core plate in this case. However, this type of runner has disadvantages such as more heat loss and scrap compared with circular cross section type. This might cause the molten plastic to solidify faster.This problem was reduced by designing in such a way that therunner is short and has larger diameter, which is 6mm in diameter. It is important that the runner designed distributes material or molten plastic into cavities at the same time under the same pressure and with the same temperature. Due to this, the cavity layout had been designed in symmetrical form.Another design aspect that is taken into consideration was air vent design. The mating surface between the core plate and the cavity plate has very fine finishing in order to prevent flashing from taking place. However, this can cause air to trap in the cavity when the mould is closed and cause short shot or incomplete part. Sufficient air vent was designed to ensure that air trap can be released to avoid incomplete part from occurring.The cooling system was drilled along the length of the cavities and was located horizontally to the mould to allow even cooling. These cooling channels were drilled on both cavity and core plates. The cooling channels provided sufficient cooling of the mould in the case of turbulent flow. Fig. 2 shows cavity layout with air vents and cooling channels on core plate.Fig. 2. Cavity layout with air vents and cooling channels. In this mould design, the ejection system only consists of the ejector retainer plate, sprue puller and also the ejector plate. The sprue puller located at the center of core plate not only functions as the puller to hold the product in position when the mould is opened but it also acts as ejector to push the product out of the mould during ejection stage. No additional ejector is used or located at product cavities because the product produced is very thin, i.e. 1 mm. Additional ejector in the product cavity area might create hole and damage to the product during ejection.Finally, enough tolerance of dimensions is given consideration to compensate for shrinkage of materials.Fig. 3 shows 3D solid modeling as well as the wire frame modeling of the mould developed using Unigraphics.3.Results and discussion3.1. Results of product production and modification From the mould designed and fabricated, the warpage testing specimens produced have some defects during trial run. The defects are short shot, flashing and warpage. The short shot is subsequently eliminated by milling of additional air vents at corners of the cavities to allow air trapped to escape. Meanwhile, flashing was reduced by reducing the packing pressure of the machine. Warpage can be controlled by controlling various parameters such as the injection time, injection temperature and melting temperature.3.2. Detail analysis of mould and product After the mould and products were developed, the analysis of mould and the product was carried out. In the plastic injection moulding process, molten ABS at 210 C is injected into the mould through the sprue bushing on the cavity plate and directed into the product cavity. After cooling takes place, the product is formed. One cycle of the product takes about 35 s including 20 s of cooling time.The material used for producing warpage testing specimen was ABS and the injection temperature, time and pressure were 210 C, 3 s and 60MPa respectively. The material selected for the mould was AISI 1050 carbon steel. Properties of these materials were important in determining temperature distribution in the mould carried out using finite element analysis. Table 2 shows the properties for ABS and AISI 1050 carbon steel.Table 2 Material properties for mould and product The critical part of analysis for mould is on the cavity and core plate because these are the place where the product is formed. Therefore, thermal analysis to study the temperature distribution and temperature at through different times are performed using commercial finite element analysis software called LUSAS Analyst, Version 13.5. A two-dimensional (2D) thermal analysis is carried out for to study the effect of thermal residual stress on the mould at different regions.Modeling for the model also involves assigning properties and process or cycle time to the model. This allowed the finite element solver to analyze the mould modeled and plot time response graphs to show temperature variation over a certain duration and at different regions.For the product analysis, a two dimensional tensile stress analysis was carried using LUSAS Analyst, Version 13.5. Basically the product was loaded in tension on one end while the other end is clamped. Load increments were applied until the model reaches plasticity. Fig. 6 shows loaded model of the analysis.As a result, the cooling channel located at the center of the product cavity caused the temperature difference around the middle of the part higher than other locations. Compressive stress was developed at the middle area of the part due to more shrinkage and caused warpage due to uneven shrinkage that happened. However, the temperature differences after cooling for different nodes are small and the warpage effect is not very significant. It is important for a designer to design a mould that has less thermal residual stress effect with efficient cooling system.For the product analysis, from the steps being carried out to analyze the plastic injection product, the stress distribution on product at different load factor is observed in the two dimensional analysis.A critical point, Node 127, where the product experiences maximum tensile stress was selected for analysis.From the load case versus stress curves at this point plotted in Fig. 23, it is clear that the product experiencing increased in tensile load until it reached the load factor of 23, which is 1150 N. This means that the product can withstand tensile load until 1150 N. Load higher than this value causes failure to the product. Based on Fig. 23, the failure is likely to occur at the region near to the fixed end of the product with maximum stress of 3.27107 Pa.The product stress analysis reveals very limited information since the product produced was for warpage testing purposes and had no relation with tensile loading analysis.In future, however, it is suggested that the product service condition should be determined so that further analysis may be carried out for other behaviors under various other loading. that affect warpage. The testing specimen was produced at low cost and involves only little finishing that is de-gating.The thermal analysis of plastic injection mould has provided an understanding of the effect of thermal residual stress on deformed shape of the specimen and the tensile stress analysis of product managed to predict the tensile load that the warpage testing specimen can withstand before experiencing failure.
收藏