2019-2020年高中數(shù)學 第五課時 3.2.1古典概型的特征和概率計算公式教案 北師大版必修3.doc
《2019-2020年高中數(shù)學 第五課時 3.2.1古典概型的特征和概率計算公式教案 北師大版必修3.doc》由會員分享,可在線閱讀,更多相關(guān)《2019-2020年高中數(shù)學 第五課時 3.2.1古典概型的特征和概率計算公式教案 北師大版必修3.doc(4頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學 第五課時 3.2.1古典概型的特征和概率計算公式教案 北師大版必修3一、教學目標:1、知識與技能:(1)正確理解古典概型的兩大特點:1)試驗中所有可能出現(xiàn)的基本事件只有有限個;2)每個基本事件出現(xiàn)的可能性相等;(2)掌握古典概型的概率計算公式:P(A)=2、過程與方法:(1)通過對現(xiàn)實生活中具體的概率問題的探究,感知應(yīng)用數(shù)學解決問題的方法,體會數(shù)學知識與現(xiàn)實世界的聯(lián)系,培養(yǎng)邏輯推理能力;(2)通過模擬試驗,感知應(yīng)用數(shù)字解決問題的方法,自覺養(yǎng)成動手、動腦的良好習慣。3、情感態(tài)度與價值觀:通過數(shù)學與探究活動,體會理論來源于實踐并應(yīng)用于實踐的辯證唯物主義觀點.二、重點與難點:正確理解掌握古典概型及其概率公式;三、學法與教學用具:1、與學生共同探討,應(yīng)用數(shù)學解決現(xiàn)實問題;2、通過模擬試驗,感知應(yīng)用數(shù)字解決問題的方法,自覺養(yǎng)成動手、動腦的良好習慣四、教學過程1、創(chuàng)設(shè)情境:(1)擲一枚質(zhì)地均勻的硬幣,結(jié)果只有2個,即“正面朝上”或“反面朝上”,它們都是隨機事件。(2)一個盒子中有10個完全相同的球,分別標以號碼1,2,3,10,從中任取一球,只有10種不同的結(jié)果,即標號為1,2,3,10。師生共同探討:根據(jù)上述情況,你能發(fā)現(xiàn)它們有什么共同特點?2、基本概念:(1)基本事件、古典概率模型見課本(2)古典概型的概率計算公式:P(A)=3、例題分析:課本例題略例1 擲一顆骰子,觀察擲出的點數(shù),求擲得奇數(shù)點的概率。分析:擲骰子有6個基本事件,具有有限性和等可能性,因此是古典概型。解:這個試驗的基本事件共有6個,即(出現(xiàn)1點)、(出現(xiàn)2點)、(出現(xiàn)6點)所以基本事件數(shù)n=6,事件A=(擲得奇數(shù)點)=(出現(xiàn)1點,出現(xiàn)3點,出現(xiàn)5點),其包含的基本事件數(shù)m=3所以,P(A)=0.5小結(jié):利用古典概型的計算公式時應(yīng)注意兩點:(1)所有的基本事件必須是互斥的;(2)m為事件A所包含的基本事件數(shù),求m值時,要做到不重不漏。例2 從含有兩件正品a1,a2和一件次品b1的三件產(chǎn)品中,每次任取一件,每次取出后不放回,連續(xù)取兩次,求取出的兩件產(chǎn)品中恰有一件次品的概率。解:每次取出一個,取后不放回地連續(xù)取兩次,其一切可能的結(jié)果組成的基本事件有6個,即(a1,a2)和,(a1,b2),(a2,a1),(a2,b1),(b1,a1),(b2,a2)。其中小括號內(nèi)左邊的字母表示第1次取出的產(chǎn)品,右邊的字母表示第2次取出的產(chǎn)用A表示“取出的兩種中,恰好有一件次品”這一事件,則A=(a1,b1),(a2,b1),(b1,a1),(b1,a2)事件A由4個基本事件組成,因而,P(A)=例3 現(xiàn)有一批產(chǎn)品共有10件,其中8件為正品,2件為次品:(1)如果從中取出一件,然后放回,再取一件,求連續(xù)3次取出的都是正品的概率;(2)如果從中一次取3件,求3件都是正品的概率分析:(1)為返回抽樣;(2)為不返回抽樣解:(1)有放回地抽取3次,按抽取順序(x,y,z)記錄結(jié)果,則x,y,z都有10種可能,所以試驗結(jié)果有101010=103種;設(shè)事件A為“連續(xù)3次都取正品”,則包含的基本事件共有888=83種,因此,P(A)= =0.512(2)解法1:可以看作不放回抽樣3次,順序不同,基本事件不同,按抽取順序記錄(x,y,z),則x有10種可能,y有9種可能,z有8種可能,所以試驗的所有結(jié)果為1098=720種設(shè)事件B為“3件都是正品”,則事件B包含的基本事件總數(shù)為876=336, 所以P(B)= 0.467解法2:可以看作不放回3次無順序抽樣,先按抽取順序(x,y,z)記錄結(jié)果,則x有10種可能,y有9種可能,z有8種可能,但(x,y,z),(x,z,y),(y,x,z),(y,z,x),(z,x,y),(z,y,x),是相同的,所以試驗的所有結(jié)果有10986=120,按同樣的方法,事件B包含的基本事件個數(shù)為8766=56,因此P(B)= 0.467小結(jié):關(guān)于不放回抽樣,計算基本事件個數(shù)時,既可以看作是有順序的,也可以看作是無順序的,其結(jié)果是一樣的,但不論選擇哪一種方式,觀察的角度必須一致,否則會導(dǎo)致錯誤4、課堂小結(jié):本節(jié)主要研究了古典概型的概率求法,解題時要注意兩點:(1)古典概型的使用條件:試驗結(jié)果的有限性和所有結(jié)果的等可能性。(2)古典概型的解題步驟;求出總的基本事件數(shù);求出事件A所包含的基本事件數(shù),然后利用公式P(A)=5、自我評價與課堂練習:1在40根纖維中,有12根的長度超過30mm,從中任取一根,取到長度超過30mm的纖維的概率是( )A B C D以上都不對2盒中有10個鐵釘,其中8個是合格的,2個是不合格的,從中任取一個恰為合格鐵釘?shù)母怕适茿 B C D 3在大小相同的5個球中,2個是紅球,3個是白球,若從中任取2個,則所取的2個球中至少有一個紅球的概率是 。4拋擲2顆質(zhì)地均勻的骰子,求點數(shù)和為8的概率。答案:1B提示:在40根纖維中,有12根的長度超過30mm,即基本事件總數(shù)為40,且它們是等可能發(fā)生的,所求事件包含12個基本事件,故所求事件的概率為,因此選B.2C提示:(方法1)從盒中任取一個鐵釘包含基本事件總數(shù)為10,其中抽到合格鐵訂(記為事件A)包含8個基本事件,所以,所求概率為P(A)=.(方法2)本題還可以用對立事件的概率公式求解,因為從盒中任取一個鐵釘,取到合格品(記為事件A)與取到不合格品(記為事件B)恰為對立事件,因此,P(A)=1P(B)=1=.3提示;記大小相同的5個球分別為紅1,紅2,白1,白2,白3,則基本事件為:(紅1,紅2),(紅1,白1),(紅1,白2)(紅1,白3),(紅2,白3),共10個,其中至少有一個紅球的事件包括7個基本事件,所以,所求事件的概率為.本題還可以利用“對立事件的概率和為1”來求解,對于求“至多”“至少”等事件的概率頭問題,常采用間接法,即求其對立事件的概率P(A),然后利用P(A)1P(A)求解。6、作業(yè):課本第136頁2、3、4五、教學反思:- 1.請仔細閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領(lǐng)!既往收益都歸您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高中數(shù)學 第五課時 3.2.1古典概型的特征和概率計算公式教案 北師大版必修3 2019 2020 年高 數(shù)學 第五 課時 3.2 古典 特征 概率 計算 公式 教案 北師大 必修
鏈接地址:http://italysoccerbets.com/p-2635374.html