【溫馨提示】====設計包含CAD圖紙 和 DOC文檔,均可以在線預覽,所見即所得,,dwg后綴的文件為CAD圖,超高清,可編輯,無任何水印,,充值下載得到【資源目錄】里展示的所有文件======課題帶三維,則表示文件里包含三維源文件,由于三維組成零件數(shù)量較多,為保證預覽的簡潔性,店家將三維文件夾進行了打包。三維預覽圖,均為店主電腦打開軟件進行截圖的,保證能夠打開,下載后解壓即可。======詳情可咨詢QQ:1304139763
寧波大紅鷹學院
畢業(yè)設計(論文)外文翻譯
所在學院: 機械與電氣工程學院
專 業(yè): 機械設計制造及其自動化
班 級: 12機自2班
姓 名: 於小喻
學 號: 1221080240
指導教師: 朱火美
2015 年 11 月 15 日
譯文:
題目 機械手轉動關節(jié)工作周期的優(yōu)化問題
出處:springer
Bogdan Posiadala · Mateusz Tomala · Dawid Cekus ·Pawe? Wary′s
Received: 25 February 2014 / Revised: 27 March 2014 / Accepted: 4 April 2014 / Published online: 5 May 2014 ? The Author(s) 2014. This article is published with open access at Springerlink.com
摘要:在這項工作中,機械手轉動關節(jié)的工作周期的優(yōu)化運動建模問題一直受到關注。在任何空間工作周期條件下的機械手元件的運動方程已制定。利用經(jīng)典的矢量力學和二類拉格朗日方程完成了該公式的編制。利用商業(yè)軟件得到了系統(tǒng)的運動方程。為每個致動器考慮所選擇的運動模型是具有準梯形速度分布的點至點運動模型。此外,優(yōu)化問題提出了一個特定的工作周期。優(yōu)化目標已被選為最小化致動器的負載(扭矩)。他目標函數(shù)已經(jīng)在每個考慮執(zhí)行機構制定了使用性能指標和設計變量的額定速度值和工作周期的初始時間值。利用約束多目標粒子群優(yōu)化算法求解該優(yōu)化問題。數(shù)值計算已使用完畢并且專門執(zhí)行軟件和計算的結果已被附加到文書工作。
B. Posiadala · M. Tomala (B) · D. Cekus · P. Wary′s Institute of Mechanics and Machine Design Foundations,Czestochowa University of Technology, Czestochowa, Poland e-mail: tomala@imipkm.pcz.pl
關鍵詞:建模學,動力學,機器人,機械手,運動,優(yōu)化
一、引言
多體系統(tǒng)動力學現(xiàn)象的建模與分析問題一直是許多工作的主題。在作品[1-3],這個文章的作者提出的建模和汽車起重機及其組件的動態(tài)分析的問題。從這項工作的角度來看,這是值得引用的作品[4—7]。在作品中,機器人的建模和優(yōu)化問題已經(jīng)提出不同的目標函數(shù)和約束應用于算法。
在這部作品中,4R機械手的動力學建模的問題已經(jīng)提出。此外,優(yōu)化的點對點的工作周期的問題已經(jīng)制定和解決。示例性計算已經(jīng)執(zhí)行和計算的結果已被附加到文書工作。
二、機械手的運動學和動力學
在一個三維空間中操縱器和四個轉動關節(jié)(4R機械手)允許定位機械手的末端執(zhí)行器,另外,允許旋轉的制動裝置機械手。這樣的系統(tǒng)是一個開放的運動鏈,以簡單的形式顯示在圖1。
考慮系統(tǒng)的運動學和動力學一直在制定全球坐標系統(tǒng)OXYZ笛卡爾,如圖1所示。機械手的模型由四自由度剛體的轉動關節(jié)連接P,Q,S和N。所有功能的運動學已經(jīng)確定使用經(jīng)典力學引入局部坐標系永久連接到所考慮的運動鏈的機構。開放運動鏈的運動學問題被廣泛描述的作品[8-12]。
圖1 4R機器人的方案
機器人機械手的逆動力學問題與轉動關節(jié)包括確定每個考慮關節(jié)轉矩的變化,而位置,速度和加速度函數(shù)是已知的。解決這個問題的最好方法是制定適當?shù)臋C械功能(動力學和潛在)能源和使用拉格朗日第二類方程。如果L是拉格朗日,考慮機械手的動力學方程是:
ddx?y?qi-?L?qi=Mi,i=1…4 (1)
廣義坐標:
q={φ1,φ2,φ3,φ4} (2)
拉格朗日是系統(tǒng)的總動能減去總勢能。由于每個元素的系統(tǒng)被認為是一個剛體,一個特定的元素的動能是平移和旋轉運動的動能總和。一個特定元素勢能是重元素乘以距離勢能最?。ㄈ蚩蚣躉xy平面)。
在這項工作中,還提出了4R機械臂的優(yōu)化問題。優(yōu)化的目標是最小化每個考慮的致動器的轉矩。目標函數(shù)可以使用性能指數(shù)[12]制定。對于一個特定的致動器,該指數(shù)具有一個形式:
Pi=0tkMi2dt (3)
三、運動模型
在這部作品中,點對點模型的運動已被接受。在文獻中,各種型號的速度分布可以滿足。例如,配置文件可以被選為梯形,正弦或拋物線[12]。在這項工作中,一個準梯形速度分布已采取。速度和加速度的時間變化如圖2和圖3所示。其中數(shù)據(jù)是所有重要的工作周期參數(shù)。
圖2選擇運動模型的角速度隨時間變化
圖3選擇運動模型的角加速度隨時間變化
從優(yōu)化的角度來看,最重要的參數(shù)是工作周期的開始時間及其額定速度。在每個考慮關節(jié)角位移可以簡單地計算為:
si=φi(B)-φiA (4)
額定速度保持的最大加速度和持續(xù)時間等于:
ai=viti(Z)+tia (5)
ti(d)=sivi -tiz-2tia (6)
設計變量可以被收集到一個向量:x=v1,v2,v3,v4,t1,t2,t3,t4 (7)
四、粒子群優(yōu)化算法
粒子群優(yōu)化算法是一種最現(xiàn)代的隨機優(yōu)化技術,是1995年由肯尼迪和埃伯哈特在工作中首次提出的[13]。從一開始,這種方法得到了廣泛的發(fā)展,不斷的應用以及修改到目前為止,例如[14-16]。在機器人技術中,這種方法通常被用來找到最佳的幾何參數(shù)和慣性參數(shù)的固定機器人,如機械手[4-7]。它也被用于移動機器人找到二維空間的移動機器人最優(yōu)軌跡。
粒子群優(yōu)化算法是基于觀察自然界中出現(xiàn)的現(xiàn)象,如昆蟲或魚群的覓食。
粒子群的每個粒子都能夠記住并使用它的經(jīng)驗,從整個迭代過程中,也可以與其他成員進行溝通。粒子群是能夠識別“好”領域的領域,并可以在這些領域尋找一個最佳的。
圖4約束粒子群優(yōu)化算法的簡化方案
設計變量的初始值(特定粒子的位置)是隨機的。然后,在一個迭代步驟n + 1,所覆蓋的距離在m方向的粒子(在m個方向的粒子的速度)如下:
Vm(n+1)=XwVm(n)+c1r1(Pm-xmn)+c2r2(gm-xmn) (8)
在χ是收縮因子,Vm(n)是在先前的迭代速度,w是一個權重系數(shù),r1和r2是隨機實數(shù)從(0;1),c1和c2是學習的因素,Pm是考慮粒子從整個迭代過程和gm一個人最好位置是一個全球性的最佳位置以獲得整個群。在公式中,三個不同的影響因素可以確定:第一是慣性的影響,其次是個人的影響,第三是社會影響。還有另一個版本的這個公式,全球最佳位置通用gm被替換為一個本地最好的位置lm。在這個版本中,每個粒子都有指定的鄰域,并將其個人最好的位置和附近的鄰居進行比較。
此外,在每個考慮方向的最大速度應設置為保護群從爆炸:
Vmn+1=sgnVmn+1VmmaxVmn+1ifVmn+1Vmn+1<>VmmaxVmmax, (9)
其中Vm(max)是M個方向的最大速度。
每一個粒子在每一個方向上的一個新位置等于:
xm(n+1)=xm(n)+Vm(n+!). (10)
在迭代過程中,設計變量的值必須滿足某些約束條件。所有變量都必須是正的。速度的跡象是已知的,并依賴于每個被認為的致動器的角位移的跡象(第3章)。此外,速度被限制的最大速度,可在每個致動器中。此外,最大時間的工作周期是指定的,并為每個關節(jié)的最大轉矩值是已知的。所有制定的限制如下:
0
0 13
Mi
收藏