外文翻譯--多尺度模擬復(fù)合材料和結(jié)構(gòu)與DIGIMAT ANSYS
《外文翻譯--多尺度模擬復(fù)合材料和結(jié)構(gòu)與DIGIMAT ANSYS》由會(huì)員分享,可在線閱讀,更多相關(guān)《外文翻譯--多尺度模擬復(fù)合材料和結(jié)構(gòu)與DIGIMAT ANSYS(31頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
畢業(yè)設(shè)計(jì)外文資料翻譯 設(shè)計(jì)題目 :手機(jī)前蓋沖壓工藝分析及級(jí)進(jìn)模設(shè)計(jì) 譯文 題目 : 注塑模具 學(xué)生姓名: 學(xué) 號(hào): 專業(yè)班級(jí): 指導(dǎo)教師: 正文: 外文資料翻譯譯文 附件: 外文原文 指導(dǎo)教師評(píng)語: 簽名: 年 月 日 正文:外文資料翻譯譯文 多尺度模擬復(fù)合材料和結(jié)構(gòu)與 件版本 009 年 2 月 ,程 ,2009 年版權(quán) 料 : 工程塑料、 增強(qiáng)塑料 . 術(shù) : 析數(shù)據(jù)映射圖 。 術(shù) 。 分析軟件: 行業(yè): 材料供應(yīng)商、汽車、航空、消費(fèi)者和工業(yè)產(chǎn)品。 法律通告 : 程 是 程的注冊(cè)商標(biāo)。 其他產(chǎn)品及公司名稱和商標(biāo)的商標(biāo) 權(quán) 或注冊(cè)商標(biāo) 權(quán)歸 他們的各自的主人 所有 。 概要 在這篇文章中 , 簡(jiǎn)要的 介紹兩個(gè)尺度的建模方法 ,平均場(chǎng)均化處理和有限元同化 方法, 在進(jìn)行建模時(shí),這些強(qiáng)大的技術(shù)用與微觀和宏觀的應(yīng)力和應(yīng)變場(chǎng) ,可以通過影響 (改變 )材料 內(nèi)部 微觀組織來控制材料在宏觀上表現(xiàn)出來的 性能 (例如:纖維取向、纖維含量、纖維長(zhǎng)度,等等 ) 。 說明這些技巧 , 我們 目前的狀況是:(一) 應(yīng)用有限元分析均到納米二氧化鈦 ; (二 )研究了注入玻璃纖維增強(qiáng)塑料霓虹燈扣使用有限元計(jì)算的宏觀尺度結(jié)合 中值場(chǎng) 均在微 觀的 尺度 上 。 多尺度建模:簡(jiǎn)介 作為一種激勵(lì) 人心的例子 , 讓我們來看一個(gè)由短玻璃纖維加固的熱塑性聚合物塑料部件。 作為典型的注塑生產(chǎn)過程,這種分布于成品內(nèi)部的纖維將毫無疑問的會(huì)在走向和長(zhǎng)度上發(fā)生普遍的改變。 看圖( 1), 該復(fù)合材料 同時(shí)呈現(xiàn)各向異性與非均質(zhì)性, 這使它極難得 到一個(gè)可靠準(zhǔn)確的產(chǎn)品模擬,因?yàn)樗媒?jīng)典的方法是基于宏觀的本構(gòu)模型。 然而,通過多尺度的方法使預(yù)測(cè)模擬成為可能 ,這種預(yù)測(cè)模擬可以把這種復(fù)合材料用相當(dāng)簡(jiǎn)單的方式進(jìn)行描述,如圖: 圖( 1) : 在注射玻璃纖維增強(qiáng)塑料后的離合器踏板中的纖維取向分布圖 (有羅地亞公司和特瑞 堡 集團(tuán)提供) 此圖 讓我們研究學(xué)習(xí)了異構(gòu)實(shí)體的顯微組織組成的矩陣資料并且這些所謂的“夾雜物”可以是短纖維、小片晶體、顆粒、微小孔或微裂紋。 我們的目標(biāo)是根據(jù)它的顯微結(jié)構(gòu),模擬預(yù)測(cè)產(chǎn)品在施加載荷和增加邊界條件 ( 下所產(chǎn)生的變化和影響。 我們能區(qū)分出兩種 尺度 ,分別是微觀層次和宏觀層次。 這個(gè)模型在微觀結(jié)構(gòu)尺度上與異質(zhì)性質(zhì)相符 ,然而從宏觀尺度上看,可以認(rèn)為是局部均勻的。如圖: 圖( 2) :在實(shí)踐中 ,解決力學(xué)問題時(shí)的計(jì)算不可能停留在微尺度層面上。因此 ,我們考慮的是宏觀尺度 , 并且假設(shè)每個(gè)質(zhì)點(diǎn)是大量代表性 的等效體積單元 (中心 ,這些質(zhì)點(diǎn)包含潛在的異質(zhì)性的微觀結(jié)構(gòu)。 經(jīng)典的固體力學(xué)是進(jìn)行宏觀尺度分析的 ,只可惜在計(jì)算每個(gè)點(diǎn)后,應(yīng)力、應(yīng)變值像 邊界條件 傳送到潛伏的 等效體積單元 一樣被傳送了。 換句話說 :每個(gè)數(shù)值的縮放就被認(rèn)為是一個(gè)宏觀點(diǎn)。這樣等效 體積 單元的問題都解決了濱 且每個(gè)單元都返回應(yīng)力和剛度的測(cè)試值 ,這個(gè)方法被用于宏觀尺度的計(jì)算中。 圖 2:多尺度的材料建模的插圖,現(xiàn)在唯一的困難在于 這種用二尺度的方法(和更多一般的多尺度的方法)來解決等效體積單元的問題。它可以被等價(jià)為一個(gè)在經(jīng)典邊界條件作用下的等效體積單元 ,此時(shí)宏觀上的應(yīng)變與應(yīng)力等于所有等效體積單元內(nèi)部未知的區(qū)域內(nèi)微應(yīng)變和應(yīng)力的體積平均值。 在線彈性的條件下 ,運(yùn)用復(fù)合材料的宏觀尺度時(shí),涉及到了那兩個(gè)能給出有效剛度或總體剛度的均值。為了解決這個(gè)問題 ,你可以使用等效體積單元有名的有限元方法算法 ,見圖 7到 10。該方法的優(yōu)點(diǎn)是既簡(jiǎn) 單又非常準(zhǔn)確。然而 ,它有兩個(gè)主要的缺點(diǎn)是 :在計(jì)算實(shí)際的微結(jié)構(gòu)時(shí)網(wǎng)格化分非常困難和在處理非線性問題時(shí)占用大量的 算時(shí)間 ,比如在模擬計(jì)算非彈性材料性能的時(shí)候。 另一個(gè)完全不同的方法是平均場(chǎng)均質(zhì)法 ,這種方法是基于應(yīng)力體積平均值和一個(gè)等效體積單元的每個(gè)相的應(yīng)變場(chǎng)之間的假設(shè)關(guān)系而形成的方法 ;見圖 3。 與絕對(duì)的有限元方法和其他所有現(xiàn)存的數(shù)值轉(zhuǎn)換方法相比 ,平均場(chǎng)均質(zhì)法( 僅是最好用的而且在占用 間方面明顯是最快的。然而 ,平均場(chǎng)均質(zhì)法 也有兩個(gè)缺點(diǎn) ,一是它無法給出每個(gè)相中的詳細(xì)應(yīng)變和應(yīng)力場(chǎng)數(shù)值 ,二是局限于夾雜 物的橢球面形狀。 圖 3:平均場(chǎng)均質(zhì)法的過程。 (1)局部應(yīng)變根據(jù)宏觀應(yīng)變計(jì)算; (2)局部應(yīng)力根據(jù)局部應(yīng)變和每個(gè)相的組織模型來計(jì)算; (3)宏觀應(yīng)力根據(jù)平均局部應(yīng)力計(jì)算。 一個(gè)典型的等效體積單元的例子是 型,已經(jīng)成功適用于具有相同和對(duì)齊尺寸的橢圓形夾雜物的兩相復(fù)合材料中。該模型假定了,如果等效體積單元是單獨(dú)存在于一個(gè)無限的由實(shí)際的基體材料組成的空間中時(shí),每個(gè)夾雜物都包含了等效體積單元。邊界條件在解決單一的夾雜問題時(shí)相當(dāng)于實(shí)際的等效體積單元的基體相應(yīng)變場(chǎng)體積平均值的計(jì)算方法。 單夾雜物分析 問題已經(jīng)被 一篇標(biāo)志性論文中解決了,這是平均場(chǎng)均質(zhì)模型劃時(shí)代的基石。 圖四:原理的 質(zhì)化的程序 型和其它 平 均場(chǎng)均質(zhì)模型已經(jīng)推廣到 許多 案例中了 ,如熱耦合、兩相非直線纖維的復(fù)合材料(使用多步驟分步處理的途徑)或多相復(fù)合材料(使用一個(gè)多層次的方法) 。 這個(gè)預(yù)測(cè)已經(jīng)直接廣泛地驗(yàn)證了均場(chǎng)均質(zhì)模型的有限元模擬和實(shí)驗(yàn)結(jié)果的校驗(yàn)。 作為一種普遍的結(jié)論 ,人們發(fā)現(xiàn)在線 (熱 )彈性條件下 ,平均場(chǎng)均質(zhì)可給出有效特性的精確預(yù)測(cè)值 ,盡管是分布式取向 ,然而在終止近似 值法上取得的進(jìn)步仍然是受歡迎的。 另外 ,確定平均場(chǎng)均質(zhì)模型可用于 可用在復(fù)合材料每個(gè)微結(jié)構(gòu)中像用在機(jī)織織物的每根紗線中一樣。 一個(gè)重要并且仍持續(xù)在理論模型和計(jì)算方法上努力的在材料或幾何非線性領(lǐng)域推廣。這種擴(kuò)展包括一些主要的困難:第一個(gè)是線性化 ,在微觀尺度上本構(gòu)方程需要線性化 ,需要微線彈性 二個(gè)問題是對(duì)所謂的對(duì)比資料,即定義每個(gè)相中具有均勻瞬時(shí)剛度的控制運(yùn)算符。接下來需要解決的問題是一階和二階同化,在一階均以真正的本構(gòu)模型計(jì)算作為比較材料 ,但不是每個(gè)相的應(yīng)變和應(yīng)力場(chǎng)的體積平均值。在一 個(gè)二階配方 ,充足的統(tǒng)計(jì)信息 ,即每個(gè)相的應(yīng)變和應(yīng)力場(chǎng)的方差也考要慮進(jìn)去。 最后 ,非常難的技術(shù)難點(diǎn)涉及 希爾的與各向異性的瞬時(shí)剛度相關(guān)算子比較的張量計(jì)算方法。 在多尺度分析耦合有限元方法用于宏觀尺度 ,同時(shí) ,確定各高斯點(diǎn)進(jìn)行了計(jì)算 ,無論是在線性或非線性的狀態(tài)。 這是實(shí)踐中最可行的方法。見圖 5。 圖 5: 經(jīng)典的鐵和耦合的有限元 / 法對(duì)比。 廣泛的驗(yàn)證和驗(yàn)證結(jié)果表明 ,平均場(chǎng)均質(zhì)模型確定可用于實(shí)踐中存在的非線性問題 ,并且一般情況下可以帶來良好的非線性預(yù)測(cè)值 ,然而在某些情況下工作可以持續(xù)提高 精度 (和減少 間與多尺度分析相結(jié)合)。 有限元均值處理法 : 一種納米復(fù)合材料的應(yīng)用方法 未來材料最有可能的是納米材料 ,它廣泛的為未來各種領(lǐng)域提供新的劃時(shí)代的應(yīng)用 ,例如如納米電子學(xué) ,納米生物科技和納米醫(yī)學(xué)等領(lǐng)域。 這樣 ,越來越多的精力放在理解和模擬他們的性狀上以及得知什么是納米效應(yīng)。而目前正在開發(fā)的新工具 ,來解決這個(gè)工程上的挑戰(zhàn) ,今天有些新工具已經(jīng)提供給工程師使用。其中 :有限元素均值法應(yīng)用的最多。 模型聚合物類填料 ,一種典型的納米效果填料。材料科學(xué)家在納米尺度上,面臨一些有關(guān)設(shè)計(jì)和加工的納米復(fù)合尺度的挑戰(zhàn) ,這些新的物理現(xiàn)象 ,從宏觀尺度上看是可以忽略不計(jì)的。舉例來說, 納米填料均勻的分散在復(fù)合基體中,被認(rèn)為可以改善材料的機(jī)械性能 ,然而期望具有導(dǎo)電率的聚和物類和滲透類導(dǎo)熱或?qū)щ娦远夹枰黾拥幕A(chǔ)材料。 參見圖 6,實(shí)現(xiàn)完成一個(gè)或其他如今是在材料加工和對(duì)其研究方面構(gòu)成的挑戰(zhàn)。 圖六 : 納米填料的擴(kuò)散 有限元均值法:它需要進(jìn)行幾何研究并被明確的產(chǎn)生并且是網(wǎng)狀的 ,可以準(zhǔn)確模擬滲流和集群效應(yīng)。如圖所示 ,介紹了宏觀材料質(zhì)點(diǎn)的彈性力學(xué)性能目前在塑料聚合物上的影響。 圖 7 給出了兩種周期性納米結(jié)構(gòu) ,也稱為等效體積元素 (這已 經(jīng)在使用 法。 介紹了聚合類材料參數(shù)已經(jīng)產(chǎn)生最終的幾何坐標(biāo),聚合材料內(nèi)含物集中的聚類附近的兩個(gè)截然不同的地方。體積分?jǐn)?shù) 5%的相位和夾雜物是球形的。 一旦包圍 ,這些結(jié)構(gòu)將在等效體積單元中只受單向拉伸條件 ,運(yùn)用 x, y,z 軸的負(fù)向和有限元方法。利用 限元求解器進(jìn)行求解之后問題就解決了。 圖 7:微結(jié)構(gòu)與均勻分布夾雜物 (左 )與群集 (右 )。 結(jié)果比較 : 圖 8: 應(yīng)力分布在夾雜物 (左 )和矩陣 (右 )為隨機(jī)放置的雜質(zhì) 圖 8 到 10 個(gè)說明應(yīng)力分布矩陣和夾雜物的階段 ,在這個(gè)案例中介紹的是 x 軸單向拉 伸試驗(yàn)測(cè)試。由于最近的聚類中心附近的包裹 ,應(yīng)力集中現(xiàn)象出現(xiàn)。這樣 ,可以提高了 30%的拉應(yīng)力進(jìn)行了觀察 ,對(duì)聚類情況 x 軸向單向拉伸加載條件下進(jìn)行觀察 ,見圖 10。 圖 11 是在等效體積單元中 應(yīng)力與應(yīng)變分布和 應(yīng)變分布和基質(zhì)材料的相。 觀察夾雜的相時(shí)候應(yīng)用了一個(gè)明顯的更高的應(yīng)力水平。這種更高的應(yīng)力集中 ,不會(huì)隨機(jī)或均勻分布內(nèi)含的夾雜物 ,而且在施加載荷的時(shí)候可能會(huì)導(dǎo)致脫粘。 圖 9:力分布在夾雜物 (左 )和矩陣 (右 )為聚物。 圖 10: 2D 等效體積單元的部分觀點(diǎn)的群集 (左 )和隨機(jī) (右 )。拉應(yīng)力分布。 圖 11: )和 力應(yīng)變 (右 )分布在等效體積單元的納米階段 ,對(duì)這兩種情況下 ,一個(gè)沿 z 軸方向的加載。 在這個(gè)低體積分?jǐn)?shù)的內(nèi)含物中 ,我們看到這類不明顯改變其宏觀力學(xué)性能的資料 ,請(qǐng)參閱表 1。 處在這樣一個(gè)位置 ,最好的方法是避免納米夾雜物材料的出現(xiàn),當(dāng)試圖增加基材的剛度 (基質(zhì)剛度 = 2195 合納米填料 (填料剛度 = 7000 有限元法和平均場(chǎng)均值處理法耦合計(jì)算 : 已經(jīng)應(yīng)用到一部分的工業(yè)中 。 出于許多原因 (制造成本、適應(yīng)性、加工方法、高強(qiáng)度對(duì)抗 ) 注射部分由短的玻璃纖維增 強(qiáng)塑料在我們的日常生活中已經(jīng)無處不在。 但當(dāng)它用這樣的材料做成的模型 ,能夠模擬宏觀模型構(gòu)成的物質(zhì)模型受到捕捉效應(yīng)的影響,例如注射過程?答案是否定的 ,因?yàn)樗麄儾]有從中捕獲的由注塑工藝決定的對(duì)纖維的分布方向產(chǎn)生的影響。 下面的例子中 ,它由一個(gè)霓虹燈扣受載荷的過程 ,介紹了耦合分析和有限元軟件 間的區(qū)別。這個(gè)過程在圖 12 中表現(xiàn)的很清楚 ,并且包括下列步驟: 1、注射成型工藝過程使用 行了數(shù)值模擬?,F(xiàn)有結(jié)果是纖維取向張量 ,將作為輸入 構(gòu)仿真。 2、張量計(jì)算的定位可用映射圖在準(zhǔn)備從注射網(wǎng)格映射到粗糙的結(jié)構(gòu)性沖突的映射工具 (在 )。 3、 這個(gè)結(jié)構(gòu)仿真是利用 限元求解加上 尺度的材料建模 ,模具制作的每個(gè)整合平均場(chǎng)均值方法進(jìn)行結(jié)構(gòu)模型。 圖 12:耦合分析的過程。 獲得 維取向張量作為輸入 ,除了材料性能之外還有作為塑料模型采用了 限元模擬。 問題的說明: 這個(gè)輕環(huán)由四個(gè)獨(dú)立的部分組成 ,見圖 13,也顯示了不同的零件之間的接觸結(jié)果。 他們兩個(gè)都由 30%的玻璃纖 維增強(qiáng)尼龍和 種新型復(fù)合材料)注入。他們的注射過程都在 進(jìn)行了注塑模擬。 滑塊和支座組建假設(shè)是由鋼鐵制作的。 關(guān)閉的卡環(huán)是模擬位移滑而擋住了支持和部分的內(nèi)部。對(duì)稱性邊界條件來限制也被應(yīng)用到一半的部分研究。這個(gè)目標(biāo)是為了評(píng)價(jià)模擬零件表面的平均應(yīng)力最大值 ,在負(fù)載期間 ,比較了利用線性彈性響應(yīng)模型 ,利用材料的彈性模量進(jìn)行確定 龍與玻璃纖維和彈塑性模型進(jìn)行平均場(chǎng)均值法計(jì)算的結(jié)果。 材料建模 為了模仿在 的型 ,做了以下假設(shè) : 1、 玻璃纖維仍舊在線性彈性的領(lǐng)域。 2、 聚酰胺(尼龍)具有可塑性和線彈性。 3、 纖維的縱橫(長(zhǎng)度 /直徑)比值為30。 參見圖 14:拉伸反應(yīng)的材料模型。 圖 13:表述的是霓虹燈扣和四個(gè)獨(dú)立部件之間觸體的關(guān)系。由 圖 14: 龍材料的模型。各向同性案例的拉伸響應(yīng) ,固定的纖維取向 (1D)、隨機(jī)二維定位 (2D)和隨機(jī)三維定位 (3D)。由 份有限公司提供。 仿真結(jié)果 而有限元均值法具有明顯的在等效體積單元中準(zhǔn)確的應(yīng)變 /應(yīng)力場(chǎng)優(yōu)勢(shì),平均場(chǎng)均值 法只能得到微觀層面的平均的應(yīng)力與應(yīng)變值。 盡管如此 ,它給我們的信息如果我們用宏觀的本構(gòu)模型我們將不能使用這個(gè)方法。 同樣地 ,在這個(gè)基質(zhì)的相中平均累積塑性應(yīng)變的可以直接的在塑料部件中去觀察可塑性的分布。 最大的塑性變形都可以從外圍表面部分觀察到。如圖 15。 圖 15:平均分布于塑性應(yīng)變積累在基體相的內(nèi)部和外部的部分。范圍 藍(lán)色 )紅色 )。由 份有限公司提供。 圖 16:線性彈性各向同性反應(yīng) (經(jīng)典的有限元法 )與各向異性非線性 (有限元法和平均場(chǎng)均值法 )的對(duì)比。 提高到 21%的不 同是觀察應(yīng)力大小 ,用硬線彈性模型得到更高的應(yīng)力。 圖 16:各向同性彈性鉤 (左 )和各向異性非線性模型 (右 )。由 份有限公司提供。 參考書目: 1. M. 異構(gòu)體的整體性能 . 艾斯維爾科學(xué)出版社, 1993。 2. 莫里,田中.具有彈性能量雜質(zhì)的材料的基質(zhì)的平均應(yīng)力.金屬學(xué)報(bào), 1973年 ,571 21 卷。 3. 彈性模量的確定的領(lǐng)域中的相關(guān)問題. 士, 1226 年,倫敦 :倫敦皇家學(xué)會(huì) . 1957 年 ,第 241 卷, 376 4. 概述聚合物基納米復(fù)合材料的工程應(yīng)用前景. 一卷。 5. 有納米壓痕的納米硅基的納米復(fù)合材料聚合物概要.郭等人.強(qiáng)化塑料和復(fù)合材料雜志, 2004 年。 附件:外文原文 009 2009 of A. or of In we of on To we i) an of to a of an at F at an As a us a up of a As of in of . be it to a of a on a is a be in a as : in an us a of a of , be or is to of on We to of at be as . In it be to at we is of a is at at or Cs to In a is at VE of at : of 1). in is to VE It be a to VE of In or of at In to VE 0. of it a PU as is is on of or in of a . to E to is to in PU FH it is to in it is to : (i) on (on to by A FH is 2) is to of VE as if it in an of Cs in to of in of 3) in a is FH : of FH to as a or a E or As a it in of in be FH be D, in An in in is FH to or is at to be or is of to in to be is vs In of or In a of or is a s s is to of a FE is at at is in or is in . : E E/FH be in to in on in PU an to be of as of in a of As is in as as to to of a to of at at of is to of a or to be . or a in of : as it to be an of As an we of on of a to to of % be to in VE y- be : : in in 0 in in of to of As up 0% 0. 1 33 33 in as as in in or to : in in 0: 2D of 1: 33 in in VE a At of we of . a of is by to of a 2195 by a 7000 an to an or , up of in it to as is as do of on of a to of a is 2, of 1. is as in 2. . 3. is FH at of 2:- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
5 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 外文 翻譯 尺度 模擬 復(fù)合材料 結(jié)構(gòu) DIGIMAT ANSYS
鏈接地址:http://italysoccerbets.com/p-31585.html