2019-2020年高中數學《函數的單調性》教案北師版必修1.doc
《2019-2020年高中數學《函數的單調性》教案北師版必修1.doc》由會員分享,可在線閱讀,更多相關《2019-2020年高中數學《函數的單調性》教案北師版必修1.doc(10頁珍藏版)》請在裝配圖網上搜索。
2019-2020年高中數學《函數的單調性》教案北師版必修1 【教學目標】 【知識目標】:使學生從形與數兩方面理解函數單調性的概念,學會利用函數圖像理解和研究函數的性質,初步掌握利用函數圖象和單調性定義判斷、證明函數單調性的方法. 【能力目標】通過對函數單調性定義的探究,滲透數形結合數學思想方法,培養(yǎng)學生觀察、歸納、抽象的能力和語言表達能力;通過對函數單調性的證明,提高學生的推理論證能力. 【德育目標】通過知識的探究過程培養(yǎng)學生細心觀察、認真分析、嚴謹論證的良好思維習慣,讓學生經歷從具體到抽象,從特殊到一般,從感性到理性的認知過程. 【教學重點】函數單調性的概念、判斷及證明. 函數的單調性是學生第一次接觸用嚴格的邏輯語言證明函數的性質,并在今后解決初等函數的性質、求函數的值域、不等式及比較兩個數的大小等方面有廣泛的實際應用, 【教學難點】歸納抽象函數單調性的定義以及根據定義證明函數的單調性. 由于判斷或證明函數的單調性,常常要綜合運用一些知識(如不等式、因式分解、配方及數形結合的思想方法等)所以判斷或證明函數的單調性是本節(jié)課的難點. 【教材分析】函數的單調性是函數的重要性質之一,它把自變量的變化方向和函數值的變化方向定性的聯(lián)系在一起,所以本節(jié)課在教材中的作用如下 (1)函數的單調性起著承前啟后的作用。一方面,初中數學的許多內容在解決函數的某些問題中得到了充分運用,函數的單調性與前一節(jié)內容函數的概念和圖像知識的延續(xù)有密切的聯(lián)系;函數的單調性一節(jié)中的知識是它和后面的函數奇偶性,合稱為函數的簡單性質,是今后研究指數函數、對數函數、冪函數及其他函數單調性的理論基礎。 (2)函數的單調性是培養(yǎng)學生數學能力的良好題材,這節(jié)課通過對具體函數圖像的歸納和抽象,概括出函數在某個區(qū)間上是增函數或減函數的準確定義,明確指出函數的增減性是相對于某個區(qū)間來說的。教材中判斷函數的增減性,既有從圖像上進行觀察的直觀方法,又有根據其定義進行邏輯推理的嚴格證明方法,最后將兩種方法統(tǒng)一起來,形成根據觀察圖像得出猜想結論,進而用推理證明猜想的體系。同時還要綜合利用前面的知識解決函數單調性的一些問題,有利于學生數學能力的提高。 (3)函數的單調性有著廣泛的實際應用。在解決函數值域、定義域、不等式、比較兩數大小等具體問題中均需用到函數的單調性;同時在這一節(jié)中利用函數圖象來研究函數性質的數形結合思想將貫穿于我們整個數學教學。 因此“函數的單調性”在中學數學內容里占有十分重要的地位。它體現了函數的變化趨勢和變化特點,在利用函數觀點解決問題中起著十分重要的作用,為培養(yǎng)創(chuàng)新意識和實踐能力提供了重要方式和途徑。 【學情分析】 從學生的知識上看,學生已經學過一次函數,二次函數,反比例函數等簡單函數,函數的概念及函數的表示,能畫出一些簡單函數的圖像,從圖像的直觀變化,學生能粗略的得到函數增減性的定義,所以引入函數的單調性的定義應該是順理成章的。 從學生現有的學習能力看,通過初中對函數的認識與實驗,學生已具備了一定的觀察事物的能力,積累了一些研究問題的經驗,在一定程度上具備了抽象、概括的能力和語言轉換能力。 從學生的心理學習心理上看,學生頭腦中雖有一些函數性質的實物實例,但并沒有上升為“概念”的水平,如何“定性”“定量”地描述函數性質是學生關注的問題,也是學習的重點問題。函數的單調性是學生從已經學習的函數中比較容易發(fā)現的一個性質,學生也容易產生共鳴,通過對比產生頓悟,渴望獲得這種學習的積極心向是學生學好本節(jié)課的情感基礎。但是如何運用數學符號將自然語言的描述提升為形式化的定義,學生接受起來比較困難?在教學中要多引導,讓學生真正的理解函數單調性的定義。 【教學方法】教師是教學的主體、學生是學習的主體,通過雙主體的教學模式方法: 啟發(fā)式教學法——以設問和疑問層層引導,激發(fā)學生,啟發(fā)學生積極思考,逐步從常識走向科學,將感性認識提升到理性認識,培養(yǎng)和發(fā)展學生的抽象思維能力。 探究教學法——引導學生去疑;鼓勵學生去探; 激勵學生去思,培養(yǎng)學生的創(chuàng)造性思維和批判精神。 合作學習——通過組織小組討論達到探究、歸納的目的。 【教學手段】計算機、投影儀. 【教學過程】 一、創(chuàng)設情境,引入課題(利用電腦展示) 1. 如圖為某市一天內的氣溫變化圖: (1)觀察這個氣溫變化圖,說出氣溫在這一天內的變化情況. (2)怎樣用數學語言刻畫在這一天內“隨著時間的增大,氣溫逐漸升高或下降”這一特征? 引導學生識圖,捕捉信息,啟發(fā)學生思考. 問題:觀察圖形,能得到什么信息? 預案:(1)當天的最高溫度、最低溫度以及何時達到; (2)在某時刻的溫度; (3)某些時段溫度升高,某些時段溫度降低. 在生活中,我們關心很多數據的變化規(guī)律,了解這些數據的變化規(guī)律, 是很有幫助的. 問題:還能舉出生活中其他的數據變化情況嗎? 預案:股票價格、水位變化、心電圖等等 春蘭股份線性圖 . 水位變化圖 歸納:用函數觀點看,其實就是隨著自變量的變化,函數值是變大還是變?。? 〖設計意圖〗由生活情境引入新課,激發(fā)興趣. 二、歸納探索,形成概念 對于自變量變化時,函數值是變大還是變小,初中同學們就有了一定的認識,但是沒有嚴格的定義,今天我們的任務首先就是建立函數單調性的嚴格定義. 1.借助圖象,直觀感知 問題1:分別作出函數的圖象,并且觀察自變量 變化時,函數值有什么變化規(guī)律?(學生自己動手畫,然后電腦顯示下圖) 預案:生:函數在整個定義域內 y隨x的增大而增大;函數在整個定義域內 y隨x的增大而減?。? 師:函數的圖像變化規(guī)律 生:在y軸的的左側y隨x的增大而減?。趛軸的的右側y隨x的增大而增大。 師:我們學過區(qū)間的表示方法,如何用區(qū)間的概念來表述圖像的變化規(guī)律 生:在上 y隨x的增大而增大,在上y隨x的增大而減?。? 師:這樣表述就比較嚴密了,很好。由上面的討論可知,函數的單調性與自變量的范圍有關,一個函數并不一定在整個正義域內是單調函數,但在定義城的某個子集上可以是單調函數。 (3)函數的圖像變化規(guī)律如何。 生:(1)定義域中的減函數。 (2)在上 y隨x的增大而減小,在上y隨x的增大而減小. 師:對于兩種答案,哪一種是正確的,為什么?學生分組討論。從定義域,圖像的角度考慮,也可以舉反例 引導學生進行分類描述 (增函數、減函數).并引導學生用區(qū)間明確描述函數的單調性從而讓學生明確函數的單調性是對定義域內某個區(qū)間而言的,是函數的局部性質. 問題2:能不能根據自己的理解說說什么是增函數、減函數? 預案:如果函數在某個區(qū)間上隨自變量x的增大,y也越來越大,我們說函數在該區(qū)間上為增函數;如果函數在某個區(qū)間上隨自變量x的增大,y越來越小,我們說函數在該區(qū)間上為減函數. 教師指出:這種認識是從圖象的角度得到的,是對函數單調性的直觀,描述性的認識. 〖設計意圖〗從圖象直觀感知函數單調性,完成對函數單調性的第一次認識. 2.探究規(guī)律,理性認識 問題1:下圖是函數的圖象,能說出這個函數分別在哪個區(qū)間為增函數和減函數嗎?(電腦顯示,學生分組討論) 學生的困難是難以確定分界點的確切位置. 通過討論,使學生感受到用函數圖象判斷函數單調性雖然比較直觀,但有時不夠精確,需要結合解析式進行嚴密化、精確化的研究. 〖設計意圖〗使學生體會到用數量大小關系嚴格表述函數單調性的必要性. 問題2:如何從解析式的角度說明在為增函數? 預案: 生: 在給定區(qū)間內取兩個數,例如1和2,因為12<22,所以在為增函數. 生:僅僅兩個數的大小關系不能說明函數y=x2在區(qū)間[0,+∞)上為單調遞增函數,應該舉出無數個。 由于很多學生不能分清“無數”和“所有”的區(qū)別,所以許多學生對學生2的說法表示贊同。 生:函數)無數個如(2)中的實數,顯然f(x)也隨x的增大而增大,是不是也可以說函數在區(qū)間上是增函數?可這與圖象矛盾啊? 師:“無數個”能不能代表“所有”呢?比如:2、3、4、5……有無數個自然數都比大,那我們能不能說所有的自然數都比大呢?所以具體值取得再多,也不能代表所有的,思考如何體現區(qū)間上的所有值。引導學生利用字母表示數。 生:任取且,因為,即,所以在為增函數. 舊教材的定義在這里就可以歸納出來,但是人教B版新教材使用了自變量的增量和函數值的增量來表述,并為以后學習利用導數判斷函數的單調性做準備,所以需進一步引導學生利用增量來定義函數的單調性。 (5)仿(4)且,由圖象可知,即給自變量一個增量,,函數值的增量 所以在為增函數。 對于學生錯誤的回答,引導學生分別用圖形語言和文字語言進行辨析,使學生認識到問題的根源在于自變量不可能被窮舉,從而引導學生在給定的區(qū)間內任意取兩個自變量 進一步尋求自變量的增量與函數值的增量之間的變化規(guī)律,判斷函數單調性。注意這里的“都有”是對應于“任意”的。 〖設計意圖〗把對單調性的認識由感性上升到理性認識的高度,完成對概念的第二次認識.事實上也給出了證明單調性的方法,為證明單調性做好鋪墊. 3.抽象思維,形成概念 問題:你能用準確的數學符號語言表述出增函數的定義嗎? 師生共同探究,得出增函數嚴格的定義,然后學生類比得出減函數的定義. (1)板書定義 設函數的定義域為A,區(qū)間MA,如果取區(qū)間M中的任意兩個值,當改變量時,都有,那么就稱函數在區(qū)間M上是增函數,如圖(1)當改變量時,都有,那么就稱函數在區(qū)間M上是減函數,如圖(2) (2)鞏固概念(以下問題老師提問后,學生適當討論后回答) 師:根據函數的單調性的定義思考:由f(x)是增(減)函數且f(x1)- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 函數的單調性 2019 2020 年高 數學 函數 調性 教案 北師版 必修
裝配圖網所有資源均是用戶自行上傳分享,僅供網友學習交流,未經上傳用戶書面授權,請勿作他用。
鏈接地址:http://italysoccerbets.com/p-2614188.html