《【優(yōu)化方案】2020高中物理 第5章第四節(jié)知能優(yōu)化訓(xùn)練 新人教版必修2》由會員分享,可在線閱讀,更多相關(guān)《【優(yōu)化方案】2020高中物理 第5章第四節(jié)知能優(yōu)化訓(xùn)練 新人教版必修2(9頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、
1.(2020年大連高一檢測)下列關(guān)于勻速圓周運(yùn)動的說法中,正確的是( )
A.是線速度不變的運(yùn)動
B.是角速度不變的運(yùn)動
C.是角速度不斷變化的運(yùn)動
D.是相對圓心位移不變的運(yùn)動
解析:選B.勻速圓周運(yùn)動,角速度保持不變,線速度大小保持不變,方向時刻變化.A、C錯誤,B正確;相對圓心的位移大小不變,方向時刻變化,D錯誤.
2.(2020年南京高一檢測)關(guān)于角速度和線速度,說法正確的是( )
A.半徑一定,角速度與線速度成反比
B.半徑一定,角速度與線速度成正比
C.線速度一定,角速度與半徑成正比
D.角速度一定,線速度與半徑成反比
解析:選B.由v=ωr可
2、知,r一定時,v與ω成正比,A錯誤,B正確;v一定時,ω與r成反比,C錯誤;ω一定時,v與r成正比,D錯誤.
3.
圖5-4-11
如圖5-4-11所示是一個玩具陀螺.a(chǎn)、b和c是陀螺上的三個點.當(dāng)陀螺繞垂直于地面的軸線以角速度ω穩(wěn)定旋轉(zhuǎn)時,下列表述正確的是( )
A.a(chǎn)、b和c三點的線速度大小相等
B.a(chǎn)、b和c三點的角速度相等
C.a(chǎn)、b的角速度比c的大
D.c的線速度比a、b 的大
解析:選B.a、b和c均是同一陀螺上的點,它們做圓周運(yùn)動的角速度都為陀螺旋轉(zhuǎn)的角速度ω,B對,C錯.三點的運(yùn)動半徑關(guān)系ra=rb>rc,據(jù)v=ω·r可知,三點的線速度關(guān)系va=vb>vc
3、,A、D錯.
4.
圖5-4-12
如圖5-4-12所示為某一皮帶傳動裝置.主動輪的半徑為r1,從動輪的半徑為r2.已知主動輪做順時針轉(zhuǎn)動,轉(zhuǎn)速為n,轉(zhuǎn)動過程中皮帶不打滑.下列說法正確的是( )
A.從動輪做順時針轉(zhuǎn)動 B.從動輪做逆時針轉(zhuǎn)動
C.從動輪的轉(zhuǎn)速為n D.從動輪的轉(zhuǎn)速為n
解析:選BC.因為皮帶不打滑,兩輪邊緣上各點的線速度相等,各點做圓周運(yùn)動的速度方向為切線方向,則皮帶上的M、N兩點均沿MN的切線方向運(yùn)動,從動輪沿逆時針方向轉(zhuǎn)動,B對,A錯.根據(jù)線速度與角速度的關(guān)系式:v=rω,ω=2πn,所以n∶n2=r2∶r1,所以n2=n,C對,D錯.
5.做
4、勻速圓周運(yùn)動的物體,10 s內(nèi)沿半徑為20 m的圓周運(yùn)動100 m,試求物體做勻速圓周運(yùn)動時:
(1)線速度的大??;
(2)角速度的大?。?
(3)周期的大?。?
解析:(1)依據(jù)線速度的定義式v=可得:
v==m/s=10 m/s
(2)依據(jù)v=ωr解得:
ω==rad/s=0.5 rad/s
(3)依據(jù)ω=解得:
T== s=4π s.
答案:(1)10 m/s (2)0.5 rad/s (3)4π s
一、選擇題
1.(2020年武漢高一檢測)一個質(zhì)點做勻速圓周運(yùn)動時,它在任意相等的時間內(nèi)( )
A.通過的弧長相等 B.通過的位移相等
C.轉(zhuǎn)過的角度相等
5、 D.速度的變化相等
解析:選AC.由公式v=和ω=可知A、C正確;通過的位移和速度變化的方向不同,故B、D錯.
2.關(guān)于地球上的物體,由于地球的自轉(zhuǎn),則對于物體的角速度、線速度的大小,以下說法中正確的是( )
A.在赤道上的物體線速度最大
B.在兩極上的物體線速度最大
C.赤道上物體的角速度最大
D.北京和南京的角速度大小相等
解析:選AD.地球自轉(zhuǎn),地面上的角速度大小都相等,故D正確.由v=ωr知,兩極上物體的線速度為零,而赤道上物體的轉(zhuǎn)動半徑最大,故A正確.
3.
圖5-4-13
(2020年深圳高一檢測)如圖5-4-13所示,一個圓環(huán)繞中心線AB以一定的角速
6、度轉(zhuǎn)動,下列說法正確的是( )
A.P、Q兩點的角速度相同
B.P、Q兩點的線速度相同
C.P、Q兩點的角速度之比為 ∶1
D.P、Q兩點的線速度之比為 ∶1
解析:選AD.環(huán)上各點具有相同的角速度,即ωP=ωQ,A正確,C錯誤;由v=ωr得===,B錯誤,D正確.
4.(2020年晉江高一檢測)A、B兩個質(zhì)點,分別做勻速圓周運(yùn)動,在相同的時間內(nèi)它們通過的路程之比sA∶sB=2∶3,轉(zhuǎn)過的角度之比φA∶φB=3∶2,則下列說法正確的是( )
A.它們的半徑之比rA∶rB=2∶3
B.它們的半徑之比rA∶rB=4∶9
C.它們的周期之比TA∶TB=2∶3
D.它們的頻率之
7、比fA∶fB=2∶3
解析:選BC.A、B兩個質(zhì)點,在相同的時間內(nèi)通過的路程之比為2∶3,即通過的弧長之比為2∶3,所以vA∶vB=2∶3;又相同的時間內(nèi)轉(zhuǎn)過的角度之比φA∶φB=3∶2,根據(jù)ω=得ωA∶ωB=3∶2,又v=ωr,所以rA∶rB=×=×=4∶9,B選項正確.根據(jù)T=知,TA∶TB=ωB∶ωA=2∶3,C選項正確.又T=,所以fA∶fB=TB∶TA=3∶2,D選項錯.
5.某變速箱中有甲、乙、丙三個齒輪,如圖5-4-14所示,其半徑分別為r1、r2、r3,若甲輪的角速度為ω,則丙輪的角速度為( )
圖5-4-14
A. B.
C. D.
解析:選A.各輪
8、邊緣各點的線速度大小相等,則有ωr1=ω′r3,所以ω′=,故A正確.
6.
圖5-4-15
(2020年嘉興高一檢測)圖5-4-15中所示為一皮帶傳動裝置,右輪的半徑為r,a是它邊緣上的一點.左側(cè)是一輪軸,大輪的半徑為4r,小輪的半徑為2r.b點在小輪上,到小輪中心的距離為r.c點和d點分別位于小輪和大輪的邊緣上.若在傳動過程中,皮帶不打滑.則( )
A.a(chǎn)點與b點的線速度大小相等
B.a(chǎn)點與b點的角速度大小相等
C.a(chǎn)點與c點的線速度大小相等
D.c點與d點的角速度大小相等
解析:選CD.皮帶不打滑,故a、c兩點線速度相等,C正確;c點、b點在同一輪軸上,故角速度相等
9、,半徑不同,由v=ωr,b點與c點線速度不相等,即a與b線速度不等,A錯;同樣可判定a與c角速度不同,即a與b角速度不同,B錯;由于c點與d點為同軸轉(zhuǎn)動,因此兩者角速度相等,D對.
7.由“嫦娥奔月”到“萬戶飛天”,由“東方紅”樂曲響徹寰宇到航天員楊利偉遨游太空,中華民族載人航天的夢想已變成現(xiàn)實.“神舟五號”飛船升空后,先運(yùn)行在近地點高度200 km、遠(yuǎn)地點高度350 km的橢圓軌道上,實施變軌后,進(jìn)入343 km的圓軌道.假設(shè)“神舟五號”實施變軌后做勻速圓周運(yùn)動,共運(yùn)行了n周,起始時刻為t1,結(jié)束時刻為t2,運(yùn)行速度為v,半徑為r.則計算其運(yùn)行周期可用( )
A.T= B.T=
10、C.T= D.T=
解析:選AC.由題意可知飛船做勻速圓周運(yùn)動n周所需時間Δt=t2-t1,故其周期T==,故選項A正確,B錯.由周期公式有T=,故選項C正確,D錯誤.
8.
圖5-4-16
半徑為R的大圓盤以角速度ω旋轉(zhuǎn),如圖5-4-16所示,有人站在盤邊P點上隨盤轉(zhuǎn)動,他想用槍擊中在圓盤中心的目標(biāo)O,若子彈的速度為v0,則( )
A.槍應(yīng)瞄準(zhǔn)目標(biāo)O射去
B.槍應(yīng)向PO的右方偏過θ角射去,而cosθ=ωR/v0
C.槍應(yīng)向PO的左方偏過θ角射去,而tanθ=ωR/v0
D.槍應(yīng)向PO的左方偏過θ角射去,而sinθ=ωR/v0
解析:選D.子彈射出時同時參與兩個運(yùn)動
11、:沿出射方向的勻速運(yùn)動和沿圓盤切線方向的勻速運(yùn)動,要求子彈射中O,它相對于地面運(yùn)動的速度應(yīng)沿PO方向.
根據(jù)三角函數(shù)可得sinθ=ωR/v0.
9.直徑為d的紙筒,以角速度ω繞中心軸勻速轉(zhuǎn)動,把槍口垂直圓筒軸線,使子彈穿過圓筒,結(jié)果發(fā)現(xiàn)圓筒上只有一個彈孔,則子彈的速度可能是( )
A. B.
C. D.
解析:選AC.由題意知圓筒上只有一個彈孔,說明子彈穿過圓筒時,圓筒轉(zhuǎn)過的角度應(yīng)滿足
θ=(2k+1)π(k=0,1,2…)
子彈穿過圓筒所用時間t==
代入可得v=(k=0,1,2…),故A、C正確.
二、非選擇題
10.(2020年廣州高一檢測)一臺走時準(zhǔn)確的時
12、鐘,其秒針、分針、時針的長度之比l1∶l2∶l3=3∶2∶1,試求:
(1)秒針、分針、時針轉(zhuǎn)動的角速度之比;
(2)秒針、分針、時針針尖的線速度之比.
解析:(1)時鐘的秒針、分針、時針做勻速圓周運(yùn)動的周期分別為T1=60 s,T2=3600 s,T3=3600×12 s,由ω=得ω1∶ω2∶ω3=∶∶=∶∶=720∶12∶1
(2)由v=ωr得v1∶v2∶v3=ω1l1∶ω2l2∶ω3l3=720×3∶12×2∶1×1=2160∶24∶1.
答案:(1)720∶12∶1 (2)2160∶24∶1
11.
圖5-4-17
一半徑為R的雨傘繞柄以角速度ω勻速旋轉(zhuǎn),如圖5-4
13、-17所示,傘邊緣距地面高h(yuǎn),水平甩出的水滴在地面上形成一個圓,求此圓半徑r為多少?
解析:雨滴離開傘邊緣后沿切線方向水平拋出,特別注意不是沿半徑方向飛出,其間距關(guān)系如圖所示(俯視圖).
雨滴飛出的速度大小為v=ωR,
雨滴做平拋運(yùn)動在豎直方向上有
h=gt2,
在水平方向上有l(wèi)=vt
由幾何關(guān)系知,雨滴半徑r=,
解以上幾式得r=R.
答案:R
12.如圖5-4-18所示,豎直圓筒內(nèi)壁光滑,半徑為R,頂部有入口A,在A的正下方h處有出口B.一質(zhì)量為m的小球從入口沿圓筒壁切線方向水平射入圓筒內(nèi),要使球從出口B處飛出,小球進(jìn)入入口A處的速度v0應(yīng)滿足什么條件?
圖5-4-18
解析:小球豎直方向做自由落體運(yùn)動,則
h=gt2
由于圓筒內(nèi)壁光滑,小球沿水平面內(nèi)做勻速圓周運(yùn)動,若小球恰能從B處飛出,則水平方向做圓周運(yùn)動的路程為:
s=n·2πR(n=1,2,3…).
所以小球剛進(jìn)入入口時的速度為
v0==2nπR·=nπR(n=1,2,3…).
答案:v0=nπR(n=1,2,3…)