江蘇省鎮(zhèn)江市丹徒鎮(zhèn)高中數(shù)學(xué) 2.2 函數(shù)的簡單性質(zhì)(3)教案(無答案)蘇教版必修1

上傳人:艷*** 文檔編號:110739102 上傳時(shí)間:2022-06-19 格式:DOC 頁數(shù):4 大?。?24.50KB
收藏 版權(quán)申訴 舉報(bào) 下載
江蘇省鎮(zhèn)江市丹徒鎮(zhèn)高中數(shù)學(xué) 2.2 函數(shù)的簡單性質(zhì)(3)教案(無答案)蘇教版必修1_第1頁
第1頁 / 共4頁
江蘇省鎮(zhèn)江市丹徒鎮(zhèn)高中數(shù)學(xué) 2.2 函數(shù)的簡單性質(zhì)(3)教案(無答案)蘇教版必修1_第2頁
第2頁 / 共4頁
江蘇省鎮(zhèn)江市丹徒鎮(zhèn)高中數(shù)學(xué) 2.2 函數(shù)的簡單性質(zhì)(3)教案(無答案)蘇教版必修1_第3頁
第3頁 / 共4頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《江蘇省鎮(zhèn)江市丹徒鎮(zhèn)高中數(shù)學(xué) 2.2 函數(shù)的簡單性質(zhì)(3)教案(無答案)蘇教版必修1》由會(huì)員分享,可在線閱讀,更多相關(guān)《江蘇省鎮(zhèn)江市丹徒鎮(zhèn)高中數(shù)學(xué) 2.2 函數(shù)的簡單性質(zhì)(3)教案(無答案)蘇教版必修1(4頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、課題 2.2 函數(shù)的簡單性質(zhì)(3) 課型 新授 教學(xué)目標(biāo): 1.進(jìn)一步認(rèn)識函數(shù)的性質(zhì),從形與數(shù)兩個(gè)方面引導(dǎo)學(xué)生理解掌握函數(shù)奇偶性的概念,能準(zhǔn)確地判斷所給函數(shù)的奇偶性; 2.通過函數(shù)的奇偶性概念的教學(xué),揭示函數(shù)奇偶性概念的形成過程,培養(yǎng)學(xué)生觀察、歸納、抽象的能力,培養(yǎng)學(xué)生從特殊到一般的概括能力,并滲透數(shù)形結(jié)合的數(shù)學(xué)思想方法; 3.引導(dǎo)學(xué)生從生活中的對稱聯(lián)想到數(shù)學(xué)中的對稱,師生共同探討、研究,從代數(shù)的角度給予嚴(yán)密的代數(shù)形式表達(dá)、推理,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)、認(rèn)真、科學(xué)的探究精神. 教學(xué)重點(diǎn):函數(shù)奇偶性的概念及函數(shù)奇偶性的判斷. 教學(xué)難點(diǎn):函數(shù)奇偶性的概念的理解與證明. 教學(xué)過

2、程 備課札記 一、問題情境 1.情境. 復(fù)習(xí)函數(shù)的單調(diào)性的概念及運(yùn)用. 教師小結(jié):函數(shù)的單調(diào)性從代數(shù)的角度嚴(yán)謹(jǐn)?shù)乜坍嬃撕瘮?shù)的圖象在某范圍內(nèi)的變化情況,便于我們正確地畫出相關(guān)函數(shù)的圖象,以便我們進(jìn)一步地從整體的角度,直觀而又形象地反映出函數(shù)的性質(zhì).在畫函數(shù)的圖象的時(shí)候,我們有時(shí)還要注意一個(gè)問題,就是對稱(見P41). 2.問題. 觀察函數(shù)y=x2和y=(x≠0)的圖象,從對稱的角度你發(fā)現(xiàn)了什么? 二、學(xué)生活動(dòng) 1.畫出函數(shù)y=x2和y=(x≠0)的圖象 2.利用折紙的方法驗(yàn)證函數(shù)y=x2圖象的對稱性 3.理解函數(shù)奇偶性的概念及性質(zhì). 三、數(shù)學(xué)建構(gòu) 1.奇、偶函數(shù)

3、的定義: 一般地,如果對于函數(shù)f(x)的定義域內(nèi)的任意的一個(gè)x,都有f(-x)=f(x),那么稱函數(shù)y=f(x)是偶函數(shù); 如果對于函數(shù)f(x)的定義域內(nèi)的任意的一個(gè)x,都有f(-x)=-f(x),那么稱函數(shù)y=f(x)是奇函數(shù); 2.函數(shù)的奇偶性: 如果函數(shù)f(x)是奇函數(shù)或偶函數(shù),我們就說函數(shù)f(x)具有奇偶性,而如果一個(gè)函數(shù)既不是奇函數(shù),也不是偶函數(shù)(常說該函數(shù)是非奇非偶函數(shù)),則說該函數(shù)不具有奇偶性. 3.奇、偶函數(shù)的性質(zhì): 偶函數(shù)的圖象關(guān)于y軸對稱,奇函數(shù)的圖象關(guān)于原點(diǎn)對稱. 四、數(shù)學(xué)運(yùn)用 (一)例題 例1 判斷函數(shù)f(x)=x3+5x的奇偶性.

4、例2 判定下列函數(shù)是否為偶函數(shù)或奇函數(shù): (1)f(x)=x2-1;    (2)f(x)=2x; (3)f(x)=2|x|; (4)f(x)=(x-1)2. 小結(jié):1.判斷函數(shù)是否為偶函數(shù)或奇函數(shù),首先判斷函數(shù)的定義域是否關(guān)于原點(diǎn)對稱,如函數(shù)f(x)=2x,x∈[-1,3]就不具有奇偶性;再用定義. 2.判定函數(shù)是否具有奇偶性,一定要對定義域內(nèi)的任意的一個(gè)x進(jìn)行討論,而不是某一特定的值.如函數(shù)f(x)=x2-x-1,有f(1)=-1,f(-1)=1,顯然有f(-1)=-f(1),但函數(shù)f(x)=x2-x-1不具有奇偶性,再如函數(shù)f(x)=x3-x2-x

5、+2,有f(-1)=f(1)=1,同樣函數(shù)f(x)=x3-x2-x+2也不具有奇偶性. x2-x-1 x<0 x2+x-1 x>0 例3 判斷函數(shù)f(x)= 的奇偶性. 小結(jié):判斷分段函數(shù)是否為具有奇偶性,應(yīng)先畫出函數(shù)的圖象,獲取直觀的印象,再利用定義分段討論. (二)練習(xí) 1.判斷下列函數(shù)的奇偶性: (1) f(x)=x+; (2) f(x)=x2+; (3)f(x)=; (4) f(x)=. x y O 2.已知奇函數(shù)f(x)在y軸右邊的圖象如圖所示,試畫出函數(shù)f(x)在y軸左邊的圖象. 3.已知函數(shù)f(x+1)是偶函數(shù),則函數(shù)f(x)的對稱軸是 . 4.對于定義在R上的函數(shù)f(x),下列判斷是否正確: (1)若f(2)=f(-2),則f(x)是偶函數(shù); (2)若f(2)≠f(-2),則f(x)不是偶函數(shù); (3)若f(2)=f(-2),則f(x)不是奇函數(shù). 五、回顧小結(jié) 1.奇、偶函數(shù)的定義及函數(shù)的奇偶性的定義. 2.奇、偶函數(shù)的性質(zhì)及函數(shù)的奇偶性的判斷. 六、作業(yè) 課堂作業(yè):課本44頁5,6題. 教學(xué)反思:

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!