《江蘇省鎮(zhèn)江市丹徒鎮(zhèn)高中數(shù)學(xué) 2.1.1 函數(shù)的概念和圖象(2)教案(無(wú)答案)蘇教版必修1》由會(huì)員分享,可在線閱讀,更多相關(guān)《江蘇省鎮(zhèn)江市丹徒鎮(zhèn)高中數(shù)學(xué) 2.1.1 函數(shù)的概念和圖象(2)教案(無(wú)答案)蘇教版必修1(4頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、課題
2.1.1 函數(shù)的概念和圖象(2)
課型
新授
教學(xué)目標(biāo):
1.進(jìn)一步理解用集合與對(duì)應(yīng)的語(yǔ)言來(lái)刻畫(huà)的函數(shù)的概念,進(jìn)一步理解函數(shù)的本質(zhì)是數(shù)集之間的對(duì)應(yīng);
2.進(jìn)一步熟悉與理解函數(shù)的定義域、值域的定義,會(huì)利用函數(shù)的定義域與對(duì)應(yīng)法則判定有關(guān)函數(shù)是否為同一函數(shù);
3.通過(guò)教學(xué),進(jìn)一步培養(yǎng)學(xué)生由具體逐步過(guò)渡到符號(hào)化,代數(shù)式化,并能對(duì)以往學(xué)習(xí)過(guò)的知識(shí)進(jìn)行理性化思考,對(duì)事物間的聯(lián)系的一種數(shù)學(xué)化的思考.
教學(xué)重點(diǎn):用對(duì)應(yīng)來(lái)進(jìn)一步刻畫(huà)函數(shù);求基本函數(shù)的定義域和值域.
教學(xué)難點(diǎn):復(fù)合函數(shù)的定義域、值域.
教學(xué)過(guò)程
備課札記
一、問(wèn)題情境
1.情境.
復(fù)述函數(shù)及函數(shù)的定
2、義域的概念.
2.問(wèn)題.
概念中集合A為函數(shù)的定義域,集合B的作用是什么呢?
二、學(xué)生活動(dòng)
1.理解函數(shù)的值域的概念;
2.能利用觀察法求簡(jiǎn)單函數(shù)的值域;
3.探求簡(jiǎn)單的復(fù)合函數(shù)f(f(x))的定義域與值域.
三、數(shù)學(xué)建構(gòu)
1.函數(shù)的值域:
(1)按照對(duì)應(yīng)法則f,對(duì)于A中所有x的值的對(duì)應(yīng)輸出值組成的集合稱之為函數(shù)的值域;
(2)值域是集合B的子集.
2.x? g(x)T f(x) ? f(g(x)),其中g(shù)(x)的值域即為f(g(x))的定義域;
四、數(shù)學(xué)運(yùn)用
(一)例題.
例1 已知函數(shù)f (x)=x2+2x,求 f (-2),f (-1),f (0
3、),f (1).
例2 根據(jù)不同條件,分別求函數(shù)f(x)=(x-1)2+1的值域.
(1)x∈{-1,0,1,2,3};
(2)x∈R;
(3)x∈[-1,3];
(4)x∈(-1,2];
(5)x∈(-1,1).
例3 求下列函數(shù)的值域:
①y=; ②y=.
例4 已知函數(shù)f(x)與g(x)分別由下表給出:
x
1
2
3
4
x
1
2
3
4
f(x)
2
3
4
1
g(x)
2
1
4
3
分別求f (f (1)),f (g (2)),g(f (3)),g (g (4))的值.
(二)練習(xí)
4、.
(1)求下列函數(shù)的值域:
①y=2-x2; ②y=3-|x|.
(2)已知函數(shù)f(x)=3x2-5x+2,求f(3)、f(-2)、f(a)、f(a+1).
(3)已知函數(shù)f(x)=2x+1,g(x)=x2-2x+2,試分別求出g(f(x))和f(g(x))的值域,比較一下,看有什么發(fā)現(xiàn).
(4)已知函數(shù)y=f(x)的定義域?yàn)閇-1,2],求f(x)+f(-x)的定義域.
(5)已知f(x)的定義域?yàn)閇-2,2],求f(2x),f(x2+1)的定義域.
五、回顧小結(jié)
函數(shù)的對(duì)應(yīng)本質(zhì),函數(shù)的定義域與值域;
利用分解的思想研究復(fù)合函數(shù).
六、作業(yè)
課本P31-5,8,9.
教學(xué)反思: