細長活塞桿加工工藝及夾具設計【含CAD圖紙、說明書】
資源目錄里展示的全都有,所見即所得。下載后全都有,請放心下載。原稿可自行編輯修改=【QQ:401339828 或11970985 有疑問可加】
機械加工工序卡片產(chǎn)品型號零件圖號產(chǎn)品名稱超細長活塞桿零件名稱共9頁第1頁車間工序號工序名稱材 料 牌 號10車外圓及兩端27SiMn毛 坯 種 類毛坯外形尺寸每毛坯可制件數(shù)每 臺 件 數(shù)無縫鋼管、鑄 件11設備名稱設備型號設備編號同時加工件數(shù)普通車床CW618011夾具編號夾具名稱切削液3爪卡盤 跟刀架工位器具編號工位器具名稱工序工時 (分)準終單件62.78工步號工 步 內(nèi) 容工 藝 裝 備主軸轉(zhuǎn)速切削速度進給量切削深度進給次數(shù)工步工時r/minm/minmm/rmm機動輔助1以外圓為基準,車削左右兩端面,保證總長度大于3495四爪卡盤、跟刀架32018.090.4320.202以外圓為基準,右端倒角5x30四爪卡盤、跟刀架3頂兩端,粗車外圓各部分尺寸,留余量3mm四爪卡盤、跟刀架71050.100.202162.58 設 計(日 期) 校 對(日期) 審 核(日期) 標準化(日期) 會 簽(日期)標記處數(shù)更改文件號簽 字 日 期標記處數(shù)更改文件號簽 字 日 期機械加工工序卡片產(chǎn)品型號零件圖號產(chǎn)品名稱超細長活塞桿零件名稱共9頁第2頁車間工序號工序名稱材 料 牌 號15車外圓及兩端27SiMn毛 坯 種 類毛坯外形尺寸每毛坯可制件數(shù)每 臺 件 數(shù)無縫鋼管、鑄 件11設備名稱設備型號設備編號同時加工件數(shù)普通車床CW618011夾具編號夾具名稱切削液專用夾具工位器具編號工位器具名稱工序工時 (分)準終單件36.54工步號工 步 內(nèi) 容工 藝 裝 備主軸轉(zhuǎn)速切削速度進給量切削深度進給次數(shù)工步工時r/minm/minmm/rmm機動輔助1車削兩端面,頂右端尖孔,保證尺寸3450為3452,總長3490四爪卡盤、跟刀架1508.50.20220.1082頂兩端,半精車各部分尺寸,留余量11.5mm四爪卡盤、跟刀架32056.270.301.5136.43 設 計(日 期) 校 對(日期) 審 核(日期) 標準化(日期) 會 簽(日期)標記處數(shù)更改文件號簽 字 日 期標記處數(shù)更改文件號簽 字 日 期機械加工工序卡片產(chǎn)品型號零件圖號產(chǎn)品名稱超細長活塞桿零件名稱共9頁第3頁車間工序號工序名稱材 料 牌 號22精車外圓27SiMn毛 坯 種 類毛坯外形尺寸每毛坯可制件數(shù)每 臺 件 數(shù)無縫鋼管、鑄 件11設備名稱設備型號設備編號同時加工件數(shù)普通車床CW618011夾具編號夾具名稱切削液工位器具編號工位器具名稱工序工時 (分)準終單件1.52工步號工 步 內(nèi) 容工 藝 裝 備主軸轉(zhuǎn)速切削速度進給量切削深度進給次數(shù)工步工時r/minm/minmm/rmm機動輔助1車削兩端面,頂右端頂尖,總長3490四爪卡盤、跟刀架1458.20.50.2520.042頂兩端,除45尺寸部分外,其余尺寸按圖紙精車,保證尺寸45mm,3450mm,圓柱度、直線度要求四爪卡盤、跟刀架710111.470.150.511.48 設 計(日 期) 校 對(日期) 審 核(日期) 標準化(日期) 會 簽(日期)標記處數(shù)更改文件號簽 字 日 期標記處數(shù)更改文件號簽 字 日 期機械加工工序卡片產(chǎn)品型號零件圖號產(chǎn)品名稱超細長活塞桿零件名稱共9頁第4頁車間工序號工序名稱材 料 牌 號24磨削27SiMn毛 坯 種 類毛坯外形尺寸每毛坯可制件數(shù)每 臺 件 數(shù)無縫鋼管、鑄 件11設備名稱設備型號設備編號同時加工件數(shù)萬能外圓磨床M14121夾具編號夾具名稱切削液精銑夾具工位器具編號工位器具名稱工序工時 (分)準終單件8.0工步號工 步 內(nèi) 容工 藝 裝 備主軸轉(zhuǎn)速切削速度進給量切削深度進給次數(shù)工步工時r/minm/minmm/rmm機動輔助1磨成外圓,保證尺寸50+0.087 -0.025為50-0.025 -0.05,圓柱度公差0.04,直線度0.50,表面粗糙度0.8要求 四爪卡盤、跟刀架22034.520.58.0 設 計(日 期) 校 對(日期) 審 核(日期) 標準化(日期) 會 簽(日期)標記處數(shù)更改文件號簽 字 日 期標記處數(shù)更改文件號簽 字 日 期機械加工工序卡片產(chǎn)品型號零件圖號產(chǎn)品名稱超細長活塞桿零件名稱共9頁第5頁車間工序號工序名稱材 料 牌 號28銑27SiMn毛 坯 種 類毛坯外形尺寸每毛坯可制件數(shù)每 臺 件 數(shù)鑄 件11設備名稱設備型號設備編號同時加工件數(shù)立式鏜銑加工中心VMC181411夾具編號夾具名稱切削液工位器具編號工位器具名稱工序工時 (分)準終單件4.89工步號工 步 內(nèi) 容工 藝 裝 備主軸轉(zhuǎn)速切削速度進給量切削深度進給次數(shù)工步工時r/minm/minmm/rmm機動輔助1銑成A-A中尺寸18,K向視圖尺寸300.1、15,同時保證K向垂直度要求四爪卡盤190450.080544.89 設 計(日 期) 校 對(日期) 審 核(日期) 標準化(日期) 會 簽(日期)標記處數(shù)更改文件號簽 字 日 期標記處數(shù)更改文件號簽 字 日 期機械加工工序卡片產(chǎn)品型號零件圖號產(chǎn)品名稱超細長活塞桿零件名稱共9頁第6頁車間工序號工序名稱材 料 牌 號34鏜孔ZG310-570毛 坯 種 類毛坯外形尺寸每毛坯可制件數(shù)每 臺 件 數(shù)鑄 件11設備名稱設備型號設備編號同時加工件數(shù)插床B502031夾具編號夾具名稱切削液鏜床夾具工位器具編號工位器具名稱工序工時 (分)準終單件2.09工步號工 步 內(nèi) 容工 藝 裝 備主軸轉(zhuǎn)速切削速度進給量切削深度進給次數(shù)工步工時r/minm/minmm/rmm機動輔助1銑成G向視圖R5(兩處),尺寸12及垂直度要求,G向視圖R3除外允許G向視圖中的留銑刀R4(兩處)四爪卡盤1450450.14542.092 設 計(日 期) 校 對(日期) 審 核(日期) 標準化(日期) 會 簽(日期)標記處數(shù)更改文件號簽 字 日 期標記處數(shù)更改文件號簽 字 日 期機械加工工序卡片產(chǎn)品型號零件圖號產(chǎn)品名稱超細長活塞桿零件名稱共9頁第7頁車間工序號工序名稱材 料 牌 號36車ZG310-570毛 坯 種 類毛坯外形尺寸每毛坯可制件數(shù)每 臺 件 數(shù)鑄 件11設備名稱設備型號設備編號同時加工件數(shù)普通車床CW6180B11夾具編號夾具名稱切削液專用夾具工位器具編號工位器具名稱工序工時 (分)準終單件5.54工步號工 步 內(nèi) 容工 藝 裝 備主軸轉(zhuǎn)速切削速度進給量切削深度進給次數(shù)工步工時r/minm/minmm/rmm機動輔助1找正,粗鏜孔32孔四爪卡盤758.020.121.2525.392精鏜32+0.13 0孔四爪卡盤1600160.770.100.2520.153攻螺紋2-M6-6H,打配對標記絲錐4鉗工倒圓角鉗工 設 計(日 期) 校 對(日期) 審 核(日期) 標準化(日期) 會 簽(日期)標記處數(shù)更改文件號簽 字 日 期標記處數(shù)更改文件號簽 字 日 期機械加工工序卡片產(chǎn)品型號零件圖號產(chǎn)品名稱超細長活塞桿零件名稱共9頁第8頁車間工序號工序名稱材 料 牌 號36車削螺紋ZG310-570毛 坯 種 類毛坯外形尺寸每毛坯可制件數(shù)每 臺 件 數(shù)鑄 件11設備名稱設備型號設備編號同時加工件數(shù)普通車床CW6180B11夾具編號夾具名稱切削液專用夾具工位器具編號工位器具名稱工序工時 (分)準終單件0.80工步號工 步 內(nèi) 容工 藝 裝 備主軸轉(zhuǎn)速切削速度進給量切削深度進給次數(shù)工步工時r/minm/minmm/rmm機動輔助1按圖車M48x2-6g螺紋,其中退刀槽允許不車,但要保證螺紋有效長度38四爪卡盤、跟刀架304.5221.620.80 設 計(日 期) 校 對(日期) 審 核(日期) 標準化(日期) 會 簽(日期)標記處數(shù)更改文件號簽 字 日 期標記處數(shù)更改文件號簽 字 日 期機械加工工序卡片產(chǎn)品型號零件圖號產(chǎn)品名稱超細長活塞桿零件名稱共9頁第9頁車間工序號工序名稱材 料 牌 號42拋光27SiMn毛 坯 種 類毛坯外形尺寸每毛坯可制件數(shù)每 臺 件 數(shù)無縫鋼管11設備名稱設備型號設備編號同時加工件數(shù)拋光機11夾具編號夾具名稱切削液專用夾具工位器具編號工位器具名稱工序工時 (分)準終單件工步號工 步 內(nèi) 容工 藝 裝 備主軸轉(zhuǎn)速切削速度進給量切削深度進給次數(shù)工步工時r/minm/minmm/rmm機動輔助1找正裝夾,隨車拋光,保證尺寸50-0.025 -0.05四爪卡盤、跟刀架 設 計(日 期) 校 對(日期) 審 核(日期) 標準化(日期) 會 簽(日期)標記處數(shù)更改文件號簽 字 日 期標記處數(shù)更改文件號簽 字 日 期中北大學機械工程系機械加工工藝過程卡片產(chǎn)品型號零件圖號共 3 頁產(chǎn)品名稱零件名稱細長活塞桿第 1 頁材料牌號27SiMn毛坯種類鑄件毛坯外形尺寸3492X58每毛坯件數(shù)1每臺件數(shù)1備注工序號工序名稱工序內(nèi)容車間工段設備工藝裝備(夾具、刀具)工時準終單件15車以外圓為基準,粗車鋼管兩端面,半精車各部分尺寸普通車床頂尖自備77.77877.77816檢用游標卡尺:0-125/0.02工位器具自備17熱時效處理18校直母線直線度小于0.3mm19檢用塞尺:150/0.02-0.05 平板:4mmX2mm20校直母線直線度小于0.3mm21檢用塞尺:150/0.02-0.05 平板:4mmX2mm描圖22車以外圓為基準,車鋼管兩端面,精車鋼管兩端各部分尺寸螺紋樣圈M42x2-6g48.2448.24校圖23檢用游標卡尺:0-125/0.02 百分表:0-3/0.01檢查焊縫處外觀質(zhì)量,不允許有氣孔等缺陷存在,如有缺陷存在,則轉(zhuǎn)謙焊接工序進行補焊并打磨光滑焊接處,補焊合格后方可轉(zhuǎn)下道工序底圖號24磨磨外圓尺寸,保證圖紙中各精度要求普通磨床8.08.025檢檢查焊縫外觀質(zhì)量,不允許有氣孔等缺陷存在用外徑千分尺:25-50/0.02 百分表0-3/0.01編制審核會簽裝訂號簽字日期 機械加工工藝過程卡片產(chǎn)品型號零件圖號共 3 頁產(chǎn)品名稱零件名稱細長活塞桿第 2 頁材料牌號27SiMn毛坯種類鑄件毛坯外形尺寸3492X58每毛坯件數(shù)1每臺件數(shù)1備注工序號工序名稱工序內(nèi)容車間工段設備工藝裝備(夾具、刀具)工時準終單件26鉗工劃A-A視圖中尺寸38;K向尺寸:300.1;保證對稱性及垂直度要求27檢驗鋼板尺:300mm28銑銑成A-A、K向視圖中各尺寸,同時保證K向,G向視圖中R5兩處);尺寸12及垂直度要求,G向視圖中允許留銑刀R4處(兩處)數(shù)控立式升降臺銑床2.092.0929檢驗用游標卡尺:0-125/0.02 百分表:0-3/0.01 半徑樣板7-14.530銑插成G向視圖中的R4(兩處)銑床31檢驗半徑樣板1-6.532鉗工劃32及R向2-M6-6H的加工位置線,同時K向倒角4處描圖33檢驗鋼板尺300校圖34鏜鏜孔32,倒圓,同時打配對標記0.630.63底圖號35 檢驗用游標卡尺:0-125/0.0236車按圖車成M48x2-6g,其中羅退刀槽允許不車,但要保證螺紋有效長度38,其余尺寸按圖車制加長絲錐自備2.082.0837檢驗用游標卡尺:0-125/0.02編制審核會簽裝訂號簽字日期 大 學畢業(yè)設計任務書學 院、系: 專 業(yè):機械設計制造及其自動化學 生 姓 名: 學 號: 設 計 題 目:細長桿零件加工工藝及工裝設計起 迄 日 期: 指 導 教 師: 系 主 任: 發(fā)任務書日期: 畢 業(yè) 設 計 任 務 書1畢業(yè)設計的任務和要求:任務及要求:繪制所給零件的零件圖及毛坯圖,要求圖紙規(guī)范;編制機械加工工藝規(guī)程和工序卡片;并進行工裝設計,同時制定裝配工藝。 2畢業(yè)設計的具體工作內(nèi)容:零件:超細長活塞桿,材料:27SiMn。1繪制零件及毛坯圖紙;2編制超細長活塞桿的機械加工工藝規(guī)程、工序卡,并制定與兩端頭裝配的裝配工藝;3設計一道加工工序的工裝。畢 業(yè) 設 計 任 務 書3對畢業(yè)設計成果的要求:1說明書一份;2繪制所給零件的零件圖、毛坯圖和工裝夾具圖,要求設計合理、圖紙規(guī)范;編制機械加工工藝規(guī)程;3科技譯文一份(不少于3000字符);4畢業(yè)設計工作進度計劃:起 迄 日 期工 作 內(nèi) 容2011年 2月 21 日 3月10日 3月11 日 4月 28 日4月29 日 5月 29 日5月 30 日 6月10日6月11日 6月20日查閱資料,學習相關(guān)專業(yè)知識和完成開題報告;翻譯外文資料;繪制所給零件的零件圖和毛坯圖及工裝圖;編制機械加工工藝規(guī)程、工序卡片和裝配工藝;設計一套工裝;整理設計說明書等;論文答辯學生所在系審查意見:系主任:_ 年 月 日畢業(yè)設計說明書細長桿零件加工工藝及工裝設計學生姓名: 學號: 學 院: 專 業(yè): 機械設計制造及其自動化 指導教師: 機械加工工藝過程卡片產(chǎn)品型號零件圖號共 3 頁產(chǎn)品名稱零件名稱細長活塞桿第 3 頁材料牌號27SiMn毛坯種類鑄件毛坯外形尺寸3492X58每毛坯件數(shù)1每臺件數(shù)1備注工序號工序名稱工序內(nèi)容車間工段設備工藝裝備(夾具、刀具)工時準終單件38探傷表面著色檢查,不得有裂紋,滿足標準JB/T79218-1999中I級要求39拉伸試驗任由一根做拉伸試驗,拉伸載荷為200KN,不得有異?,F(xiàn)象拉伸工裝40檢驗分別記錄實驗前后活塞桿長度、直徑、叉部銷軸孔直徑及叉部寬度尺寸41鉗工在10Mpa、20Mpa和30Mpa壓力下,分別做壓力試驗,各穩(wěn)壓1分鐘,然后反向程序卸壓,不得發(fā)生泄露及異?,F(xiàn)象堵頭、接頭自備42拋光找正裝夾,隨車拋光,保證尺寸41H643表面處理嚴格執(zhí)行表面氧化工藝,氧化后用肥皂溶液浸漬,再進行浸油處理氧化作業(yè)線入庫垂直吊放描圖校圖底圖號編制審核會簽裝訂號簽字日期14 I FORGING I JANUARY / FEBRUARY 2011FLASHLESS FORGINGOF A TWO-CYLINDER CRANKSHAFT WITH SECONDARY FORM ELEMENTSIn recent years flashless precision forging of two-cylinder crank-shafts was developed at the IPH - Institut fr Integrierte Produktion Hannover gemeinntzige GmbH. Compared to conventional forging methods, flashless precision forging permits reduction of raw ma-terial required to complete the part, as well as the omission of the process steps for trimming. Due to the improved quality of the finished parts, flashless forging makes it possible to achieve functional surfaces without extensive additional reworking. To assess the industrial applicability of this forging method, IPH is researching the technology for precision forging a challenging crank-shaft, including the secondary form elements, low end and flange. This report describes the design of the forging sequence and process. The goal of the research is a three-stage forging sequence for flashless precision forging of crankshafts with secondary form elements. Flashless precision forging is conducted in closed dies. With the method described here, die closure is realized temporally separated from the forming. There is no forming until die closure. Only the sub-sequently inserted punch initiates the forming. Precision forging reaches quality levels like tolerance classes IT 8 to IT 10 Doe07, Bro99. A four-stage forging sequence of a simpli-fied two-cylinder crankshaft without any secondary form elements is depicted in Figure 1. This sequence was developed in the special Figure 1: Stage sequence for flashless precision forging of a two-cylinder crankshaft without secondary form elements Mue08.research project, SFB 489.The first and second forming step is done by lateral extrusion in a closed die. The third step consists of multi-directional forming in a semi-open die, and the fourth (and final) step is a flash-less precision forging process, again in a closed die. During the multi-directional forming step, the part is formed in ver-tical and horizontal spatial direction. The redirection of press energy was re-alized by wedges Mue08. Present developmentTo use the precision forging technol-ogy for crankshafts in industrial op-erations, it s first necessary to supple-ment the two-cylinder crankshaft with secondary form elements, low end and flange (see Figure 2), and to redesign the forging process.To reduce production times and tool Researchers seek an industrial-scale, three-stage process for precision parts, with the efficiency and finish-product quality of flashless forging. By DIPL.-ING. MATTHIAS MEYER, DIPL.-ING. (FH) MICHAEL LCKE, DR.-ING. DIPL.-OEC. ROUVEN NICKEL and PROF. DR.-ING. BERND-ARNO BEHRENSWWW.FORGINGMAGAZINE.COM I FORGING I 15costs, opportunities for omitting one or more forming steps were assessed. Tests were conducted to determine whether the staged pro-gression must be forged in four steps (comparable to the two-cylinder crankshaft without secondary form elements), or if it s feasible to scale back to a three-stage forging process. Increased tool-loads due to the omission of one forming step can have negative effects on tool wear, thus can reducing tool life.Regarding the design of the staged sequence for a two-cylinder crankshaft with secondary form elements, marginal conditions must be considered just as for the two-cylinder crankshaft without sec-Figure 2: Two-cylinder crankshaft without (left) and with (right) secondary form elements.Figure 3: Comparison of forming forces in three- and four-stage sequences.ondary form elements. The marginal conditions might be respective presses (maximum ram force and space re-quirements) as well as fold-free and free-form crack formation.Comparison of three- and four-stage sequence The three- and four-stage sequences were designed with the Finite Element Analysis (FEA)-based simulation soft-ware Forge 2009. Before each simula-tion the temperature of the part was set to 1,250C, the tool-temperature to 250C and the forming velocity to 25 mm/s. Subsequent evaluation of the material flow was conducted with re-gard to forming force, deformation de-gree, pressure dwell time, temperature distribution within the part, and the expected tool wear. The aim was a com-parison of both staged sequences. In the intermediate stages of the four-stage forging sequence, the form-ing forces at the end of the forming are similar or higher than those in the three-stage sequence. Since the major-ity of the required deformation energy is introduced during the first three forming steps, the final forming step needs considerably less forming force (see Figure 3)16 I FORGING I JANUARY / FEBRUARY 2011In the three-stage forming sequence, the extended contact times of crankshaft and base tools cause increased cooling in the area around the main bearing and the low-end bearing during the last forming step. In the area of the crank web, a comparison of three- and four-stage forging sequences shows higher temperatures for the three-stage forging sequence due to shorter contact times of work piece and tool (see Figure 6). Due to the increased forming force, tool wear for the three-stage forging sequence is considerably higher than for the four-stage sequence. It is par-ticularly notable in the area around the main bearing and the low-end bearing (see Figure 7). This is due to increased cooling of the part due to extended con-tact times. This increased locally the flow stress, and hence heightened tri-bological load, between the parts and the tool.ConclusionBased on the deliverables, it is evi-dent, that both staged progressions are feasible since critical parameter levels, like the deformation degree X = 4 are not exceeded. Due to a lower forming force and reduced tool wear, a compari-son of FEA-results indicated benefits from the four-stage forging sequence. In order to realize the three-stage se-quence the re-design of the second in-termediate stage might be necessary in an additional loop. To reduce the forming force within the three-stage forging sequence, the material distribu-tion for the second intermediate stage should be less around the main bearing and the low end bearing and deepen in the crank web. This could reduce the contact time around the main bearing and the low-end bearing and hence the cooling effect. In addition, an increased forming velocity (at present 25 mm/s) can accelerate the forming, shorten the contact time and thus reduce the ef-fort for the realization of the final form-ing stage of the three-stage forging se-quence.Summary and outlookIn continuing research it will be necessary to explore possible applica-Figure 4: Comparison of degrees of deformation.Figure 5: Comparison between the contact times.COMPARISONS BETWEEN THREE- AND FOUR-STAGE SEQUENCES:Regarding the forming force, the analysis showed an estimated 40% higher forming force in the three-stage forming sequence com-pared to the four-stage forging sequence. The predominant forming of the four-stage forging sequence within the first three forming steps is illustrated in the comparison of deformation degrees (see Figure 4). Due to the extended forming path in the last forming step, the con-tact time of tool and work piece in the three-stage forming sequence is considerably longer than in the four-stage sequence. In particulary, the difference occurs in the area around the main bearing and the low-end bearing, where contact times are between 1.0 and 1.7 seconds for the three-stage forging sequence, and between 0.7 to 1.0 second for the four-stage forming sequences. With the three-stage forging sequence, the gravure area of the crank web is not filled before the end of the forming process. Hence, the contact period in this area is short, while the four-stage forming sequence shows longer contact times between 1.0 s and 1.3 seconds (see Figure 5). WWW.FORGINGMAGAZINE.COM I FORGING I 17Figure 6: Comparison of forming temperatures.Figure 7: Comparison of tool wear.The authors are affiliated with the Institute of Integrated Production Hannover (IPH), in Hanover, Germany; visit www.iph-hannover.de. Dipl.-Ing. Matthias Meyer studied mechanical engineering at the Leibniz University of Hanover. Since June 2008 he has worked as scientific assistant at the IPH .Dipl.-Ing. (FH) Michael Lcke studied mechanical engineering at the University of Applied Science Stralsund. Since July 2007 he has worked as scientific assistant at the IPH.Dr.-Ing. Dipl.-Oec. Rouven Nickel studied economics, focusing on production management, manufacturing technology and performance measurement at the Leibniz Universitt Hannover. Subsequently, he worked as research associate at the Institute of Production Systems and Logistics (IFA). Since 2007 he has been the managing director of the IPH. In 2008 he received his doctorate in mechanical engineering at the Universitt Bremen.Prof. Dr.-Ing. Bernd-Arno Behrens studied mechanical engineering at the University of Hanover and, subsequently, worked as research associate at the Institute of Metal Forming and Metal-Forming Machines (IFUM) at the Leibniz Universitt Hannover. After receiving his doctorate in mechanical engineering he headed the Department of Application Technology at Salzgitter AG, Salzgitter, Germany. Since 2003 he has headed the IFUM at the Leibniz Universitt Hannover, and in 2005 became a member of the management board of the IPH. The authors express their thanks to the German Research Foundation (DFG) for its financial support of the SFB 489 project described here.REFERENCESBro99 Bro, G.: Entwicklung eines Verfahrens zum Przisionsschmieden von PKW-Pleueln. Dissertation, Universitt Hannover, Fortschritt-Berichte VDI, Reihe 2, Nr. 508, VDI-Verlag, Dsseldorf 1999.Doe07 Doege, E.; Behrens, B.-A.: Handbuch Umformtechnik Grundlagen, Technologien, Maschinen. Springer-Verlag, Berlin Heidelberg 2007.Mue08 Mller, S.; Mller, K.: Parameterstudie eines mehrdirektional wirkenden Werkzeugs zum gratlosen Przisionsschmieden einer Zwei-zylinderkurbelwelle. In: STAHL, Verlag Stahleisen, o. Jg. (2008), H. 3, S.38-39.tions of cross wedge rolling for the production of the first pre-form. For the two-cylinder crankshaft with secondary form elements, the first pre-form can be realized with mass concentrations in differ-ent locations. Based on this, the design of the cross wedge rolling process will be adjusted to determine the potential for rolling with multiple wedges. 2011 Penton Media, Inc. All rights reserved.
收藏
鏈接地址:http://italysoccerbets.com/article/82877133.html