《2019年春八年級(jí)數(shù)學(xué)下冊(cè) 第20章 數(shù)據(jù)的整理與初步處理 20.3 數(shù)據(jù)的離散程度 1.方差2.用計(jì)算器求方差練習(xí) (新版)華東師大版》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《2019年春八年級(jí)數(shù)學(xué)下冊(cè) 第20章 數(shù)據(jù)的整理與初步處理 20.3 數(shù)據(jù)的離散程度 1.方差2.用計(jì)算器求方差練習(xí) (新版)華東師大版(6頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、20.3數(shù)據(jù)的離散程度1.方差2.用計(jì)算器求方差1.關(guān)于一組數(shù)據(jù):1,5,6,3,5,下列說(shuō)法錯(cuò)誤的是(C)(A)平均數(shù)是4(B)眾數(shù)是5(C)中位數(shù)是6(D)方差是3.22.某農(nóng)科所對(duì)甲、乙兩種小麥各選用10塊面積相同的試驗(yàn)田進(jìn)行種植試驗(yàn),它們的平均畝產(chǎn)量分別是=610千克,=608千克,畝產(chǎn)量的方差分別是=29.6,=2.7,則關(guān)于兩種小麥推廣種植的合理決策是(D)(A)甲的平均畝產(chǎn)量較高,應(yīng)推廣甲(B)甲、乙的平均畝產(chǎn)量相差不多,均可推廣(C)甲的平均畝產(chǎn)量較高,且畝產(chǎn)量比較穩(wěn)定,應(yīng)推廣甲(D)甲、乙的平均畝產(chǎn)量相差不多,但乙的畝產(chǎn)量比較穩(wěn)定,應(yīng)推廣乙3.甲、乙兩名隊(duì)員在5次射擊測(cè)試中,
2、命中環(huán)數(shù)的平均數(shù)都是8環(huán),各次成績(jī)分別如圖與圖.以下關(guān)于甲、乙射擊成績(jī)的比較,說(shuō)法正確的是(C)(A)甲的中位數(shù)較大,方差較小(B)甲的中位數(shù)較小,方差較大(C)甲的中位數(shù)和方差都比乙小(D)甲的中位數(shù)和方差都比乙大4.(2018濱州)如果一組數(shù)據(jù)6,7,x,9,5的平均數(shù)是2x,那么這組數(shù)據(jù)的方差為(A)(A)4(B)3(C)2(D)15.為選拔一名選手參加全國(guó)中學(xué)生游泳錦標(biāo)賽自由泳比賽,我市四名中學(xué)生參加了男子100米自由泳訓(xùn)練,他們成績(jī)的平均數(shù)及其方差s2如下表所示:甲乙丙丁10533104261042610729s21.11.11.31.6如果選拔一名學(xué)生去參賽,應(yīng)派乙去.6.為了判斷
3、甲、乙兩個(gè)小組學(xué)生英語(yǔ)口語(yǔ)測(cè)驗(yàn)成績(jī)哪一組比較整齊,通常需要知道兩組成績(jī)的.(填序號(hào))平均數(shù);中位數(shù);眾數(shù);方差.7.在“我的青春,我的夢(mèng)”演講比賽中,有五名同學(xué)的成績(jī)?nèi)缦卤硭?有兩個(gè)數(shù)據(jù)被遮蓋,那么被遮蓋的兩個(gè)數(shù)據(jù)依次是78,2.組員及項(xiàng)目甲乙丙丁戊方差平均成績(jī)得分81798082808.若下列四組數(shù)據(jù)中有三組數(shù)據(jù)的方差相同,則方差相同的三組數(shù)據(jù)是.(填序號(hào))102,103,105,107,108;2,3,5,7,8;4,9,25,49,64;1 102,1 103,1 105,1 107,1 108.9.某?;@球隊(duì)9名主力隊(duì)員中有4人調(diào)到省隊(duì)學(xué)習(xí)訓(xùn)練,學(xué)校又從其他學(xué)生中重新物色了4名球員加
4、入主力隊(duì)伍,新老隊(duì)員的身體素質(zhì)和技戰(zhàn)術(shù)水平的綜合能力得分如表所示:編號(hào)原來(lái)球隊(duì)727277777880868692現(xiàn)在球隊(duì)727277777893848384球隊(duì)調(diào)整后與調(diào)整前相比,綜合能力得分的實(shí)力“變?nèi)酢被颉安蛔儭被颉白儚?qiáng)”?并說(shuō)明理由.解:調(diào)整后與調(diào)整前相比,綜合能力得分的實(shí)力“變強(qiáng)”.理由如下:因?yàn)樵瓉?lái)球隊(duì)的綜合能力得分的平均數(shù)為(722+772+78+80+862+92)=80,現(xiàn)在球隊(duì)的綜合能力得分的平均數(shù)為(722+772+78+93+842+83)=80,所以原來(lái)球隊(duì)的綜合能力得分的方差為2(72-80)2+2(77-80)2+(78-80)2+(80-80)2+2(86-80
5、)2+(92-80)2=,現(xiàn)在球隊(duì)的綜合能力得分的方差為2(72-80)2+2(77-80)2+(78-80)2+(93-80)2+2(84-80)2+(83-80)2=40.因?yàn)?0,所以調(diào)整后與調(diào)整前相比,綜合能力得分的實(shí)力“變強(qiáng)”.10.為了比較市場(chǎng)上甲、乙兩種電子鐘每日走時(shí)誤差的情況,從這兩種電子鐘中,各隨機(jī)抽取10臺(tái)進(jìn)行測(cè)試,兩種電子鐘走時(shí)誤差的數(shù)據(jù)如下表(單位:秒):編號(hào)類(lèi)型一二三四五六七八九十甲種電子鐘1-3-442-22-1-12乙種電子鐘4-3-12-21-22-21(1)計(jì)算甲、乙兩種電子鐘走時(shí)誤差的平均數(shù);(2)計(jì)算甲、乙兩種電子鐘走時(shí)誤差的方差;(3)根據(jù)經(jīng)驗(yàn),走時(shí)穩(wěn)定
6、性較好的電子鐘質(zhì)量更優(yōu).若兩種類(lèi)型的電子鐘價(jià)格相同,請(qǐng)問(wèn):你買(mǎi)哪種電子鐘?為什么?解:(1)甲種電子鐘走時(shí)誤差的平均數(shù)是(1-3-4+4+2-2+2-1-1+2)=0,乙種電子鐘走時(shí)誤差的平均數(shù)是(4-3-1+2-2+1-2+2-2+1)=0,所以?xún)煞N電子鐘走時(shí)誤差的平均數(shù)都是0秒.(2)=(1-0)2+(-3-0)2+(2-0)2=60=6,=(4-0)2+(-3-0)2+(1-0)2=48=4.8.所以甲、乙兩種電子鐘走時(shí)誤差的方差分別是6和4.8.(3)我會(huì)買(mǎi)乙種電子鐘,因?yàn)槠骄较嗤?且甲的方差比乙的大,說(shuō)明乙種電子鐘的穩(wěn)定性更好,故乙種電子鐘的質(zhì)量更優(yōu).11.(方案設(shè)計(jì))一次科技知
7、識(shí)競(jìng)賽中,兩組學(xué)生成績(jī)統(tǒng)計(jì)如下:成績(jī)5060708090100甲組(人數(shù)/人)251013146乙組(人數(shù)/人)441621212已經(jīng)算得兩個(gè)組的人平均分都是80分,請(qǐng)根據(jù)你所學(xué)過(guò)的統(tǒng)計(jì)知識(shí),進(jìn)一步判斷這兩個(gè)組在這次競(jìng)賽中哪個(gè)組的成績(jī)較好,并說(shuō)明理由.解:甲組成績(jī)的眾數(shù)為90分,乙組成績(jī)的眾數(shù)為70分,從成績(jī)的眾數(shù)比較看,甲組成績(jī)好些.=172,=256,因?yàn)?所以甲組成績(jī)比乙組好.甲、乙兩組成績(jī)的中位數(shù)、平均數(shù)分別都是80分,其中,甲組成績(jī)?cè)?0分以上(包括80分)的有33人,乙組有26人,從這一角度看,甲組的成績(jī)總體較好.從成績(jī)統(tǒng)計(jì)表看,甲組成績(jī)高于90分(包括90分)的人數(shù)20人,乙組2
8、4人且滿(mǎn)分比甲組多6人,從這一角度看,乙組的成績(jī)較好.12.(拓展探究)如圖是甲、乙兩人在一次射擊比賽中靶的情況(擊中靶中心的圓面為10環(huán),靶中數(shù)字表示該數(shù)所在圓環(huán)被擊中所得的環(huán)數(shù)),每人射擊了6次.(1)請(qǐng)用列表法統(tǒng)計(jì)兩人的射擊成績(jī);(2)請(qǐng)你用學(xué)過(guò)的統(tǒng)計(jì)知識(shí),對(duì)他倆的這次射擊情況進(jìn)行比較.解:(1)如表所示.環(huán)數(shù)678910甲命中的環(huán)數(shù)222乙命中的環(huán)數(shù)132(2)=9環(huán),=9環(huán),=,=1,因?yàn)?,所以甲與乙的平均成績(jī)相同,但甲發(fā)揮得比乙穩(wěn)定.13.(探究題)觀(guān)察與探究:(1)觀(guān)察下列各組數(shù)據(jù)并填空:A:1,2,3,4,5;=,= ;B:11,12,13,14,15;=,=;C:10,20
9、,30,40,50;=,=;D:3,5,7,9,11;=,=.(2)比較A與B,C,D的計(jì)算結(jié)果,你能發(fā)現(xiàn)什么規(guī)律?(3)如果一組數(shù)據(jù)x1,x2,x3的平均數(shù)是2,方差是,那么另一組數(shù)據(jù)2x1-1,2x2-1,2x3-1的平均數(shù)和方差分別是多少?解:(1)321323020078(2)A與B比較,B組數(shù)據(jù)是A組各數(shù)據(jù)加10得到的,所以=+10=13,而方差不變,即=.A與C比較,C組數(shù)據(jù)是A組各數(shù)據(jù)的10倍,所以=30,=3,=102=1022=200.A與D比較,D組數(shù)據(jù)分別是A組各數(shù)據(jù)的2倍加1.所以=2+1=23+1=7,=22=222=8.規(guī)律:有兩組數(shù)據(jù),設(shè)其平均數(shù)分別為,方差分別為,當(dāng)?shù)诙M每個(gè)數(shù)據(jù)比第一組每個(gè)數(shù)據(jù)都增加m個(gè)單位時(shí),則有=+m,=;當(dāng)?shù)诙M每個(gè)數(shù)據(jù)是第一組每個(gè)數(shù)據(jù)的n倍時(shí),則有=n,=n2;當(dāng)?shù)诙M每個(gè)數(shù)據(jù)是第一組每個(gè)數(shù)據(jù)的n倍加m時(shí),則有=n+m,=n2(規(guī)律只寫(xiě)出亦可).(3)當(dāng)=2,s2=時(shí),2x1-1,2x2-1,2x3-1的平均數(shù)=22-1=3,方差s2=22s2=4=.6