《新編新課標(biāo)高三數(shù)學(xué)一輪復(fù)習(xí) 大題沖關(guān)集訓(xùn)三理》由會(huì)員分享,可在線閱讀,更多相關(guān)《新編新課標(biāo)高三數(shù)學(xué)一輪復(fù)習(xí) 大題沖關(guān)集訓(xùn)三理(7頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、大題沖關(guān)集訓(xùn)(三)1.(20xx哈爾濱一模)數(shù)列an滿足an+1-an=2,a1=2,等比數(shù)列bn滿足b1=a1,b4=a8.(1)求數(shù)列an,bn的通項(xiàng)公式;(2)設(shè)cn=anbn,求數(shù)列cn的前n項(xiàng)和Tn.解:(1)an+1-an=2,a1=2,所以數(shù)列an為等差數(shù)列,則an=2+(n-1)2=2n,b1=a1=2,b4=a8=16,所以q3=b4b1=8,q=2,則bn=2n.(2)cn=anbn=n2n+1,則Tn=122+223+324+n2n+1,2Tn=123+224+325+n2n+2,兩式相減得-Tn=122+23+24+2n+1-n2n+2,整理得Tn=(n-1)2n+2+
2、4.2.(20xx高考福建卷)已知等差數(shù)列an的公差d=1,前n項(xiàng)和為Sn.(1)若1,a1,a3成等比數(shù)列,求a1;(2)若S5a1a9,求a1的取值范圍.解:(1)因?yàn)閿?shù)列an的公差d=1,且1,a1,a3成等比數(shù)列, 所以a12=1(a1+2), 即a12-a1-2=0,解得a1=-1或a1=2. (2)因?yàn)閿?shù)列an的公差d=1,且S5a1a9, 所以5a1+10a12+8a1, 即a12+3a1-100,解得-5a12. 3.在正項(xiàng)數(shù)列an中,a1=2,點(diǎn)An(an,an+1)在雙曲線y2-x2=1上,數(shù)列bn中,點(diǎn)(bn,Tn)在直線y=-12x+1上,其中Tn是數(shù)列bn的前n項(xiàng)和.
3、(1)求數(shù)列an的通項(xiàng)公式;(2)求證:數(shù)列bn是等比數(shù)列.(1)解:由題an+1-an=1,即an是以2為首項(xiàng),公差為1的等差數(shù)列.an=2+n-1=n+1.(2)證明:由(bn,Tn)在y=-12x+1上,則Tn=-12bn+1,Tn-1=-12bn-1+1,n2,bn=-12bn+12bn-1,n2,bn=13bn-1,n2.又b1=-12b1+1,得b1=23,則bn是以23為首項(xiàng),公比為13的等比數(shù)列.4.(20xx高考新課標(biāo)全國(guó)卷)已知數(shù)列an的前n項(xiàng)和為Sn,a1=1,an0,anan+1=Sn-1,其中為常數(shù).(1)證明:an+2-an=;(2)是否存在,使得an為等差數(shù)列?并
4、說(shuō)明理由.(1)證明:由題設(shè),anan+1=Sn-1,an+1an+2=Sn+1-1.兩式相減得an+1(an+2-an)=an+1.由于an+10,所以an+2-an=.(2)解:存在滿足題意的,由題設(shè),a1=1,a1a2=S1-1,可得a2=-1.由(1)知,a3=+1,令2a2=a1+a3,解得=4.故an+2-an=4,由此可得a2n-1是首項(xiàng)為1,公差為4的等差數(shù)列,a2n-1=4n-3;a2n是首項(xiàng)為3,公差為4的等差數(shù)列,a2n=4n-1.所以an=2n-1,an+1-an=2.因此存在=4,使得數(shù)列an為等差數(shù)列.5.(20xx洛陽(yáng)模擬)已知函數(shù)f(x)=4x-2x+1(x-1
5、,xR),數(shù)列an滿足a1=a(a-1,aR),an+1=f(an)(nN*).(1)若數(shù)列an是常數(shù)列,求a的值;(2)當(dāng)a1=4時(shí),記bn=an-2an-1(nN*),證明數(shù)列bn是等比數(shù)列,并求出通項(xiàng)公式an.解:(1)因?yàn)閒(x)=4x-2x+1,a1=a,an+1=f(an)(nN*),數(shù)列an是常數(shù)列,所以an+1=an=a,即a=4a-2a+1,解得a=2或a=1.所以所求實(shí)數(shù)a的值是1或2.(2)因?yàn)閍1=4,bn=an-2an-1(nN*),所以b1=23,bn+1=an+1-2an+1-1=4an-2an+1-24an-2an+1-1=2(an-2)3(an-1),即bn+
6、1=23bn(nN*).所以數(shù)列bn是以b1=23為首項(xiàng),q=23為公比的等比數(shù)列,于是bn=23(23)n-1=(23)n(nN*),由bn=an-2an-1,即an-2an-1=(23)n,解得an=(23)n-2(23)n-1(nN*),所以所求的通項(xiàng)公式an=(23)n-2(23)n-1(nN*).6.已知等差數(shù)列an的首項(xiàng)a1=3,且公差d0,其前n項(xiàng)和為Sn,且a1,a4,a13分別是等比數(shù)列bn的b2,b3,b4.(1)求數(shù)列an與bn的通項(xiàng)公式;(2)證明:131S1+1S2+1Sn34.(1)解:設(shè)等比數(shù)列bn的公比為q,a1,a4,a13分別是等比數(shù)列bn的b2,b3,b4
7、,(a1+3d)2=a1(a1+12d).又a1=3,d2-2d=0,d=2或d=0(舍去).an=3+2(n-1)=2n+1.等比數(shù)列bn的公比為q=b3b2=a4a1=3,b1=b2q=1.bn=3n-1.(2)證明:由(1)知Sn=n2+2n,1Sn=1n(n+2)=12(1n-1n+2),1S1+1S2+1Sn=12(1-13)+(12-14)+(1n-1n+2)=12(1+12-1n+1-1n+2)=34-12(1n+1+1n+2)34.1n+1+1n+212+13=56,34-12(1n+1+1n+2)13,131S1+1S2+1Sn34.7.(20xx上饒六校月考)已知等差數(shù)列a
8、n的前n項(xiàng)和為Sn,且a2=2,S5=15,數(shù)列bn滿足b1=12,bn+1=n+12nbn.(1)求數(shù)列an,bn的通項(xiàng)公式;(2)記Tn為數(shù)列bn的前n項(xiàng)和,f(n)=2Sn(2-Tn)n+2,試問(wèn)f(n)是否存在最大值,若存在,求出最大值;若不存在,請(qǐng)說(shuō)明理由.解:(1)設(shè)等差數(shù)列an的首項(xiàng)為a1,公差為d,則a1+d=2,5a1+10d=15,解得a1=1,d=1,an=n,由題意知bn+1n+1=bn2n,bnn=b11(12)n-1,bn=n2n.(2)由(1),得Tn=12+222+323+n2n,12Tn=122+223+324+n2n+1,所以Tn=2-n+22n,又Sn=n(n+1)2,所以f(n)=2Sn(2-Tn)n+2=n2+n2n,f(n+1)-f(n)=(n+1)2+n+12n+1-n2+n2n=(n+1)(2-n)2n+1,當(dāng)n3,nN*時(shí),f(n+1)-f(n)0,當(dāng)n32500,即2n-132,得n6,該企業(yè)從開(kāi)始年底分紅后的資金超過(guò)32500萬(wàn)元.