《湖北版高考數(shù)學(xué)分項(xiàng)匯編 專題07 不等式含解析理》由會員分享,可在線閱讀,更多相關(guān)《湖北版高考數(shù)學(xué)分項(xiàng)匯編 專題07 不等式含解析理(7頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、高考數(shù)學(xué)精品復(fù)習(xí)資料 2019.5【備戰(zhàn)20xx】(湖北版)高考數(shù)學(xué)分項(xiàng)匯編 專題07 不等式(含解析)理一選擇題1.【2005年普通高等學(xué)校招生全國統(tǒng)一考試湖北卷2】對任意實(shí)數(shù)a,b,c,給出下列命題:“”是“”充要條件;“是無理數(shù)”是“a是無理數(shù)”的充要條件“ab”是“a2b2”的充分條件;“a5”是“a0,b0,稱為a,b的調(diào)和平均數(shù)。如圖,C為線段AB上的點(diǎn),且AC=a,CB=b,O為AB中點(diǎn),以AB為直徑做半圓。過點(diǎn)C作AB的垂線交半圓于D。連結(jié)OD,AD,BD。過點(diǎn)C作OD的垂線,垂足為E。則圖中線段OD的長度是a,b的算術(shù)平均數(shù),線段 的長度是a,b的幾何平均數(shù),線段 的長度是a
2、,b的調(diào)和平均數(shù)?!敬鸢浮緾D DE【解析】試題分析:在RtADB中DC為高,則由射影定理可得,故,即CD長度為a,b的幾何平均數(shù),將OC=代入可得故,所以ED=OD-OE=,故DE的長度為a,b的調(diào)和平均數(shù).6.【20xx年普通高等學(xué)校招生全國統(tǒng)一考試湖北卷14】設(shè)是定義在上的函數(shù),且,對任意,若經(jīng)過點(diǎn),的直線與軸的交點(diǎn)為,則稱為關(guān)于函數(shù)的平均數(shù),記為,例如,當(dāng)時(shí),可得,即為的算術(shù)平均數(shù).(1) 當(dāng)時(shí),為的幾何平均數(shù);(2) 當(dāng)時(shí),為的調(diào)和平均數(shù);(以上兩空各只需寫出一個(gè)符合要求的函數(shù)即可)三解答題1.【20xx年普通高等學(xué)校招生全國統(tǒng)一考試湖北卷17】提高過江大橋的車輛通行能力可改變整個(gè)城市的交通狀況,在一般情況下,大橋上的車流速度v(單位:千米/小時(shí))是車流密度x(單位:輛/千米)的函數(shù),當(dāng)橋上的車流密度達(dá)到200輛/千米時(shí),造成堵塞,此時(shí)車流速度為0,,當(dāng)車流密度不超過20輛/千米時(shí),車流速度為60千米/小時(shí)。研究表明:當(dāng)時(shí),車流速度v是車流密度x的一次函數(shù)。 ()當(dāng),求函數(shù)的表達(dá)式; ()當(dāng)車流密度為多大時(shí),車流量(單位時(shí)間內(nèi)通過橋上某觀測點(diǎn)的車輛數(shù),單位:輛/小時(shí))可以達(dá)到最大,并求出最大值。(精確到1輛/小時(shí))