北京市第二十四中學(xué)高一數(shù)學(xué)教案:《橢圓的幾何性質(zhì)》(新人教A版選修11)

上傳人:仙*** 文檔編號(hào):28234199 上傳時(shí)間:2021-08-24 格式:DOC 頁(yè)數(shù):6 大?。?41.50KB
收藏 版權(quán)申訴 舉報(bào) 下載
北京市第二十四中學(xué)高一數(shù)學(xué)教案:《橢圓的幾何性質(zhì)》(新人教A版選修11)_第1頁(yè)
第1頁(yè) / 共6頁(yè)
北京市第二十四中學(xué)高一數(shù)學(xué)教案:《橢圓的幾何性質(zhì)》(新人教A版選修11)_第2頁(yè)
第2頁(yè) / 共6頁(yè)
北京市第二十四中學(xué)高一數(shù)學(xué)教案:《橢圓的幾何性質(zhì)》(新人教A版選修11)_第3頁(yè)
第3頁(yè) / 共6頁(yè)

下載文檔到電腦,查找使用更方便

15 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《北京市第二十四中學(xué)高一數(shù)學(xué)教案:《橢圓的幾何性質(zhì)》(新人教A版選修11)》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《北京市第二十四中學(xué)高一數(shù)學(xué)教案:《橢圓的幾何性質(zhì)》(新人教A版選修11)(6頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、北京市第二十四中學(xué)教案課題:橢圓的簡(jiǎn)單幾何性質(zhì) 教材分析:解析幾何是17世紀(jì)數(shù)學(xué)發(fā)展的重大成果之一,其本質(zhì)是用代數(shù)方法研究圖形的幾何性質(zhì),體現(xiàn)了數(shù)形結(jié)合的重要數(shù)學(xué)思想。如果說(shuō)根據(jù)曲線(xiàn)的條件求出方程是解析幾何的手段,那么根據(jù)曲線(xiàn)的方程研究它的幾何性質(zhì)、畫(huà)圖就是解析幾何的目的。本節(jié)課通過(guò)對(duì)橢圓方程的討論,使學(xué)生了解如何用代數(shù)方法研究曲線(xiàn)的性質(zhì)。正如引言中提出的,圓錐曲線(xiàn)的性質(zhì)可以從純幾何的角度討論,但需要較多的知識(shí)準(zhǔn)備,而且要有較強(qiáng)的邏輯推理能力。用坐標(biāo)法研究圓錐曲線(xiàn)的性質(zhì),將復(fù)雜的幾何關(guān)系的研究轉(zhuǎn)化為對(duì)曲線(xiàn)方程特點(diǎn)的考察。代數(shù)方法可以程序化的進(jìn)行運(yùn)算,用坐標(biāo)法研究曲線(xiàn)的性質(zhì)有較強(qiáng)的規(guī)律性。本節(jié)內(nèi)

2、容為系統(tǒng)地按照方程來(lái)研究曲線(xiàn)的幾何性質(zhì)提供了一個(gè)范例,這也對(duì)將來(lái)研究雙曲線(xiàn)、拋物線(xiàn)的幾何性質(zhì)有著重要的指導(dǎo)作用。學(xué)情分析:學(xué)生在高一必修階段,學(xué)習(xí)了必修2中的直線(xiàn)與方程,圓與方程,已接觸過(guò)研究解析幾何問(wèn)題的主要方法坐標(biāo)法,本節(jié)課是在學(xué)習(xí)了橢圓標(biāo)準(zhǔn)方程的基礎(chǔ)上,探究橢圓的簡(jiǎn)單性質(zhì)的第一節(jié)課。教學(xué)目標(biāo)知識(shí)與技能: 掌握橢圓的范圍、對(duì)稱(chēng)性、頂點(diǎn)、離心率等簡(jiǎn)單幾何性質(zhì);掌握標(biāo)準(zhǔn)方程中a,b,c,e的幾何意義,以及a,b,c,e之間的相互關(guān)系初步學(xué)習(xí)利用方程研究曲線(xiàn)性質(zhì)的方法。過(guò)程與方法:通過(guò)利用曲線(xiàn)的方程來(lái)研究曲線(xiàn)性質(zhì)的方法的初步嘗試,使學(xué)生經(jīng)歷知識(shí)產(chǎn)生與形成的過(guò)程,不僅注意對(duì)研究結(jié)果的掌握和應(yīng)用,更

3、要重視對(duì)研究方法的思想滲透及分析問(wèn)題和解決問(wèn)題能力的培養(yǎng);以自主探究為主,通過(guò)體驗(yàn)數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程,培養(yǎng)學(xué)生觀察、分析、邏輯推理、理性思維的能力。情感態(tài)度與價(jià)值觀: 通過(guò)多媒體展示,讓學(xué)生體會(huì)橢圓方程結(jié)構(gòu)的和諧美和橢圓曲線(xiàn)的對(duì)稱(chēng)美,培養(yǎng)學(xué)生的審美習(xí)慣;通過(guò)自主探究、交流合作使學(xué)生親身體驗(yàn)研究的艱辛,從中體味合作與成功的快樂(lè),由此激發(fā)其更加積極主動(dòng)的學(xué)習(xí)精神和探索勇氣; 使學(xué)生充分認(rèn)識(shí)到數(shù)與形的聯(lián)系,體會(huì)數(shù)與形的辨證統(tǒng)一。教學(xué)重點(diǎn):探究并初步掌握橢圓的簡(jiǎn)單幾何性質(zhì);教學(xué)難點(diǎn):探究并初步掌握橢圓的簡(jiǎn)單幾何性質(zhì);教學(xué)方法: (1)教學(xué)策略:本節(jié)課依據(jù)“觀察,歸納,猜想,證明”及“從特殊到一般”的

4、思想方法,先由學(xué)生畫(huà)圖、折紙,觀察去發(fā)現(xiàn)橢圓的幾何性質(zhì),接著引導(dǎo)學(xué)生用代數(shù)方法進(jìn)行推證。本設(shè)計(jì)力求更好地符合學(xué)生的認(rèn)知規(guī)律,加強(qiáng)知識(shí)發(fā)生過(guò)程的教學(xué),培養(yǎng)學(xué)生的直覺(jué)思維能力與邏輯思維能力.(2)學(xué)法指導(dǎo):通過(guò)創(chuàng)設(shè)問(wèn)題情景、學(xué)生自主探究、展示學(xué)生的研究過(guò)程來(lái)激勵(lì)學(xué)生的探索勇氣。根據(jù)學(xué)生的認(rèn)知情況和學(xué)生的情感發(fā)展來(lái)調(diào)整整個(gè)學(xué)習(xí)活動(dòng)的梯度與層次,逐步形成敢于發(fā)現(xiàn)、敢于質(zhì)疑的科學(xué)態(tài)度。教學(xué)過(guò)程:教學(xué)環(huán)節(jié)教師活動(dòng)學(xué)生活動(dòng)設(shè)計(jì)意圖引入創(chuàng)設(shè)情境、導(dǎo)入課題:(多媒體展示圖片國(guó)家大劇院)為什么設(shè)計(jì)師選擇這種橢圓形設(shè)計(jì)呢?橢圓到底美在何處?它具有哪些特質(zhì)?這就是我們今天要研究的課題橢圓的簡(jiǎn)單幾何性質(zhì)觀察思考激起探究

5、欲望創(chuàng)設(shè)情境,導(dǎo)入課題,明確學(xué)習(xí)目標(biāo)通過(guò)多媒體展示,讓學(xué)生體會(huì)橢圓曲線(xiàn)的對(duì)稱(chēng)美,培養(yǎng)學(xué)生的審美習(xí)慣。開(kāi)門(mén)見(jiàn)山,激起學(xué)生對(duì)橢圓性質(zhì)探究的欲望。提出問(wèn)題探究活動(dòng):請(qǐng)同學(xué)們拿出課前剪好的橢圓紙片,在小組內(nèi)交流橢圓紙片的制作過(guò)程,從中發(fā)現(xiàn)橢圓有哪些性質(zhì)?問(wèn)1.你能找到橢圓紙片的中心嗎?問(wèn)2.給你一張矩形紙能不能剪出比矩形紙大的橢圓?問(wèn)3.有誰(shuí)剪的橢圓紙板是不對(duì)稱(chēng)的?問(wèn)4. 同學(xué)們彼此看看各自的橢圓紙片的扁平程度一樣嗎?問(wèn)5. 能不能說(shuō)任意橢圓都有上述性質(zhì)呢用什么表示任意一個(gè)橢圓?組內(nèi)交流、發(fā)現(xiàn)探究活動(dòng),提出問(wèn)題,明確學(xué)習(xí)方向引導(dǎo)學(xué)生觀察橢圓(幾何直觀),讓學(xué)生先從整體上把握幾何圖形,這就是范圍、對(duì)稱(chēng)性

6、、扁平程度等新課程強(qiáng)調(diào)以學(xué)生為主體,創(chuàng)造機(jī)會(huì)讓學(xué)生自己去發(fā)現(xiàn)、去歸納,讓學(xué)生體驗(yàn)知識(shí)的發(fā)生、發(fā)展過(guò)程,體現(xiàn)學(xué)生學(xué)習(xí)知識(shí)過(guò)程中的主體地位。解決問(wèn)題下面我們就利用橢圓的標(biāo)準(zhǔn)方程研究橢圓的幾何性質(zhì)。1 范圍:橢圓位于直線(xiàn)和所圍成的矩形框里-axa, -byb2對(duì)稱(chēng)性:橢圓關(guān)于 x軸、y軸和原點(diǎn)都對(duì)稱(chēng).坐標(biāo)軸是橢圓的對(duì)稱(chēng)軸,原點(diǎn)是橢圓對(duì)稱(chēng)中心,橢圓的對(duì)稱(chēng)中心叫橢圓的中心。3.頂點(diǎn):橢圓和它的對(duì)稱(chēng)軸有四個(gè)交點(diǎn),這四個(gè)交點(diǎn)叫橢圓的頂點(diǎn)其中A1(-a,0),A2(a,0)是橢圓與x軸的兩個(gè)交點(diǎn);B1(0,-b),B2(0,b)是橢圓與y軸的兩個(gè)交點(diǎn)線(xiàn)段A1 A2和B1 B2分別叫橢圓的長(zhǎng)軸和短軸,它們的長(zhǎng)分

7、別為2a和2b,a和b分別叫橢圓的長(zhǎng)半軸長(zhǎng)和短半軸長(zhǎng)4離心率:橢圓的焦距與長(zhǎng)軸長(zhǎng)的比,叫做橢圓的離心率說(shuō)明因?yàn)樗詄越接近,則c越接近a,從而越小,因此橢圓越扁;反之,e越接近于,c越接近于,從而b越接近于a,這時(shí)橢圓就接近于圓;當(dāng)且僅當(dāng)a=b時(shí),c=0,這時(shí)兩焦點(diǎn)重合,圖形變?yōu)閳Ax2+y2=a2(看來(lái)橢圓的扁平程度是由離心率的大小決定的)研究曲線(xiàn)的幾何性質(zhì)能從整體上把握曲線(xiàn)的形狀、大小和位置。觀察、思考、交流組內(nèi)交流代表發(fā)言新課題的問(wèn)題解決在探究活動(dòng)中,由觀察、猜想、歸納出的橢圓的一些簡(jiǎn)單幾何性質(zhì),利用方程的各種特征研究橢圓的簡(jiǎn)單幾何性質(zhì),本節(jié)課的難點(diǎn)是從橢圓標(biāo)準(zhǔn)方程的結(jié)構(gòu)特征中抽象出橢圓的

8、幾何性質(zhì)。把從具體實(shí)物中的發(fā)現(xiàn)上升到理論證明,由感性認(rèn)識(shí)到理性思考,這是進(jìn)行科學(xué)研究的必經(jīng)之路,同時(shí)也體現(xiàn)了解析幾何的本質(zhì)利用代數(shù)方法解決幾何問(wèn)題。應(yīng)用反饋創(chuàng)設(shè)情境能力提升應(yīng)用反饋例求橢圓的長(zhǎng)軸和短軸的長(zhǎng)、離心率、焦點(diǎn)和頂點(diǎn)的坐標(biāo)。例2 求適合下列條件的橢圓的標(biāo)準(zhǔn)方程:(1) (1)經(jīng)過(guò)點(diǎn)P(3, 0)、Q(0, 2); (2) (2)長(zhǎng)軸長(zhǎng)是20,離心率是(請(qǐng)同桌的同學(xué)互相出題評(píng)判:一名同學(xué)寫(xiě)一個(gè)焦點(diǎn)在y軸上的橢圓標(biāo)準(zhǔn)方程,另一名同學(xué)寫(xiě)出它的焦點(diǎn)、頂點(diǎn)坐標(biāo),長(zhǎng)軸長(zhǎng)、短軸長(zhǎng)和焦距)(類(lèi)比得出焦點(diǎn)在y軸上的橢圓的簡(jiǎn)單幾何性質(zhì) )再思考:前面提到的國(guó)家大劇院,舞臺(tái)安在橢圓的一個(gè)焦點(diǎn)處,貴賓席安在另

9、一個(gè)焦點(diǎn)處,這是為什么?課堂練習(xí);見(jiàn)學(xué)案師生互動(dòng)聯(lián)系后實(shí)物投影展示深入理解,鞏固應(yīng)用知識(shí)只有在應(yīng)用中才能得到升華,才能加深對(duì)知識(shí)的理解,才能達(dá)到熟練掌握的程度。例1是為鞏固橢圓的簡(jiǎn)單幾何性質(zhì)設(shè)置;例2是由橢圓曲線(xiàn)的幾何性質(zhì)特征,定位定量得出橢圓的標(biāo)準(zhǔn)方程,由例1、例2的設(shè)置進(jìn)一步明確解析幾何研究的主要問(wèn)題(1)據(jù)已知條件,求出表示曲線(xiàn)的方程;(2)通過(guò)曲線(xiàn)方程,研究曲線(xiàn)的性質(zhì)?;ブ鷮W(xué)習(xí)、協(xié)同研究,制作焦點(diǎn)在坐標(biāo)軸上的橢圓的簡(jiǎn)單幾何性質(zhì)的表格,使學(xué)生親身體驗(yàn)研究的艱辛,從中體味合作與成功的快樂(lè),由此激發(fā)其更加積極主動(dòng)的學(xué)習(xí)精神和探索勇氣,培養(yǎng)了學(xué)生的團(tuán)隊(duì)精神。鞏固應(yīng)用板書(shū)設(shè)計(jì)練習(xí): 學(xué)案課堂小結(jié)1.通過(guò)這節(jié)課的學(xué)習(xí),你學(xué)到了那些知識(shí)? 2.感受最深的是什么?家庭作業(yè)教材P49 A組5、3、4(寫(xiě)本上)課后反思

展開(kāi)閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話(huà):18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶(hù)上傳的文檔直接被用戶(hù)下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!