《(統(tǒng)考版)高考數(shù)學(xué)二輪復(fù)習(xí) 專題限時(shí)集訓(xùn)10 數(shù)列(含解析)(文)-人教版高三數(shù)學(xué)試題》由會(huì)員分享,可在線閱讀,更多相關(guān)《(統(tǒng)考版)高考數(shù)學(xué)二輪復(fù)習(xí) 專題限時(shí)集訓(xùn)10 數(shù)列(含解析)(文)-人教版高三數(shù)學(xué)試題(7頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、專題限時(shí)集訓(xùn)(十)數(shù)列1(2019全國(guó)卷)已知an是各項(xiàng)均為正數(shù)的等比數(shù)列,a12,a32a216.(1)求an的通項(xiàng)公式;(2)設(shè)bnlog2an,求數(shù)列bn的前n項(xiàng)和解(1)設(shè)an的公比為q,由題設(shè)得2q24q16,即q22q80.解得q2(舍去)或q4.因此an的通項(xiàng)公式為an24n122n1.(2)由(1)得bn(2n1)log222n1,因此數(shù)列bn的前n項(xiàng)和為13(2n1)n2.2(2018全國(guó)卷)已知數(shù)列an滿足a11,nan12(n1)an.設(shè)bn.(1)求b1,b2,b3;(2)判斷數(shù)列bn是否為等比數(shù)列,并說(shuō)明理由;(3)求an的通項(xiàng)公式解(1)由條件可得an1an.將n1
2、代入得,a24a1,而a11,所以a24.將n2代入得,a33a2,所以a312.從而b11,b22,b34.(2)bn是首項(xiàng)為1,公比為2的等比數(shù)列由條件可得,即bn12bn,又b11,所以bn是首項(xiàng)為1,公比為2的等比數(shù)列(3)由(2)可得2n1,所以ann2n1.3(2019全國(guó)卷)記Sn為等差數(shù)列an的前n項(xiàng)和已知S9a5.(1)若a34,求an的通項(xiàng)公式;(2)若a10,求使得Snan的n的取值范圍解(1)設(shè)an的公差為d.由S9a5得a14d0.由a34得a12d4.于是a18,d2.因此an的通項(xiàng)公式為an102n.(2)由(1)得a14d,故an(n5)d,Sn.由a10知d0
3、),由a1b13,a2b214,a3b334,得a2b23d3q14,a3b332d3q234,解得:d2,q3.an32(n1)2n1,bn3n.(2)anbn(2n1)3n,anbn的前n項(xiàng)和為(a1a2an)(b1b2bn)(352n1)(3323n)n(n2).2(2020濰坊模擬)已知等比數(shù)列an的首項(xiàng)a12,且a2,a32,a4成等差數(shù)列(1)求an的通項(xiàng)公式;(2)若bnlog2an,求數(shù)列的前n項(xiàng)和Tn.解(1)等比數(shù)列an的首項(xiàng)a12,公比設(shè)為q,a2,a32,a4成等差數(shù)列,可得a2a42(a32),即有2q2q32(2q22),解得q2.則ana1qn12n.(2)bnl
4、og2anlog22n n,則,前n項(xiàng)和Tn11.3(2020吉林二模)已知等差數(shù)列an的前n項(xiàng)和為Sn,且a23,S60.(1)求數(shù)列an的通項(xiàng)公式;(2)求使不等式Snan成立的n的最小值解(1)設(shè)等差數(shù)列an的公差為d,a23,S60,a1d3,6a115d0.解得a15,d2.an52(n1)2n7.(2)不等式Snan,即5n22n7,等價(jià)于(n1)(n7)0,解得n7.使不等式Snan成立的n的最小值為8.4(2020淄博模擬)已知數(shù)列an滿足a1,且an(n2,nN*)(1)求證:數(shù)列2nan是等差數(shù)列,并求出數(shù)列an的通項(xiàng)公式;(2)求數(shù)列an的前n項(xiàng)和Sn.解(1)證明:當(dāng)n
5、2時(shí),由an,兩邊同時(shí)乘以2n,可得2nan2n1an12,即2nan2n1an12(n2)21a123,數(shù)列2nan是以3為首項(xiàng),2為公差的等差數(shù)列2nan32(n1)2n1,an,nN*.(2)由(1)可知,Sna1a2an,Sn,兩式相減,可得:Sn,Sn5.1已知數(shù)列an的前n項(xiàng)和Snn22kn(kN*),Sn的最小值為9.(1)確定k的值,并求數(shù)列an的通項(xiàng)公式;(2)設(shè)bn(1)nan,求數(shù)列bn的前2n1項(xiàng)和T2n1.解(1)由已知得Snn22kn(nk)2k2,因?yàn)閗N*,則當(dāng)nk時(shí),(Sn)mink29,故k3.所以Snn26n.因?yàn)镾n1(n1)26(n1)(n2),所以a
6、nSnSn1(n26n)(n1)26(n1)2n7(n2)當(dāng)n1時(shí),S1a15,滿足an2n7,綜上,an2n7.(2)依題意,得bn(1)nan(1)n(2n7),則T2n1531135(1)2n(4n7)(1)2n12(2n1)752n.2已知數(shù)列an,bn滿足a11,b1,2an1anbn,2bn1anbn.(1)證明:數(shù)列anbn,anbn為等比數(shù)列;(2)記Sn為數(shù)列an的前n項(xiàng)和,證明:Sn.解(1)依題意得兩式相加得:an1bn1(anbn),anbn為等比數(shù)列,兩式相減得:an1bn1(anbn),anbn為等比數(shù)列(2)由(1)可得:anbn,anbn,兩式相加得:an,Sn
7、.3設(shè)數(shù)列an的前n項(xiàng)和為Sn,已知S12,an1Sn2.(1)證明:an為等比數(shù)列; (2)記bnlog2an,數(shù)列的前n項(xiàng)和為Tn,若Tn10恒成立,求的取值范圍解(1)由已知,得a1S12,a2S124,當(dāng)n2時(shí),anSn12,所以an1an(Sn2)(Sn12)an,所以an12an(n2)又a22a1,所以2(nN*),所以an是首項(xiàng)為2,公比為2的等比數(shù)列(2)由(1)可得an2n,所以bnn.則,Tn,因?yàn)門n10,所以10,從而,因?yàn)?020,所以的取值范圍為20,)4已知數(shù)列an的各項(xiàng)都為正數(shù),a12,且1.(1)求數(shù)列an的通項(xiàng)公式;(2)設(shè)bnlg(log2an),其中x表示不超過(guò)x的最大整數(shù),如0.90,lg 991,求數(shù)列bn的前2 020項(xiàng)和解(1)由題意,1,即aan1an2a0,整理,得(an1an)(an12an)0.數(shù)列an的各項(xiàng)都為正數(shù),an12an0,即an12an.數(shù)列an是以2為首項(xiàng),2為公比的等比數(shù)列,an2n.(2)由(1)知,bnlg(log2an)lg(log22n) lg n,故bn nN*.數(shù)列bn的前2 020項(xiàng)的和為190290031 0214 953.