卷板機設計 -四輥卷板機 【更新】【含CAD圖紙+PDF圖】
喜歡這套資料就充值下載吧。資源目錄里展示的都可在線預覽哦。下載后都有,請放心下載,文件全都包含在內,【有疑問咨詢QQ:1064457796 或 1304139763】
附 錄I(中文譯文)3.5 刀具成本的檢測加工成本是加工工具成本和切削成本的總和。機床成本由閑置費用,加工費用和工具改變費用組成。當改變切削速度的情況下閑置費用保持不變。從機械數(shù)據(jù)手冊24上表明機械設備成本的公式如下:為了優(yōu)化切割條件,必須確定切割深度大小和切割速度的數(shù)學關系式.在 我們學習的泰勒模型將被用于確定切削速度對切削刀具壽命的影響:VT =C -3-2V=切削速度T=切割時產(chǎn)生的標準金額側翼磨損(例如.0.2毫米)N和C都是由被使用的材料或者工作條件所決定的常數(shù). ,為了確定進給時的常數(shù)n和C我們以4140鋼在實驗的條件下進行研究,以LogV和LogT為坐標進行作圖,畫出了三種類型的進給圖形,圖3-8A、圖3-8B是對KC313為研究對象在干和濕的條件下分別做出的圖形,圖3-9A和圖3-9B是對KC732為研究對象在干和濕兩種狀態(tài)下所做的圖形,另外,圖3-10A、圖3-10B是以KC5010為研究對象在干和濕兩種狀況下所做的圖形. 從上述的圖形可以看出不管測量的次數(shù)有多少,其結果都是呈直線分布的形式下降,從曲線我們能夠看出,在相同的切削速度的條件下,增加磨損標準和對KC313和KC732使用冷卻液都可以提高工具的使用壽命。然而,對于KC5010來說提高磨損標準和降低使用冷卻液對提高KC5010工具壽命有好處。冷卻乳液的這種抑制作用和對磨損機構的效果我們把它列入到了第五章。以及其他類型的磨損也將插入到那里研究。金屬的切削研究主要集中在刀具的磨損、刀具的壽命和磨損機理。不過,未來的研究應該更加關注其他因素的影響:l 通過工廠體系建立磨損標準,基本的刀具磨損開端取決于工廠的產(chǎn)品。l 使用刀具的類型,向碳素鋼刀具和高速切削刀具。這對于研究在干和濕的條件下研究影響刀具壽命的因素常數(shù)(C,n)是有用的。這將提高刀具的壽命,因為它也將影響到切削的經(jīng)濟性24。為了確定切削液在選擇磨損標準時所起的作用,不同的磨損標準和經(jīng)常的進給成本在HMS下必須被研究。不同切削標準的刀具壽命常數(shù)在表(3-7)所列的表格中被摘錄和劃分。從圖3-8A/B。圖3-9A/B、圖3-10A/B的常數(shù)(C,n)的價值在表3-8和表3-9中被反映出來。在以后的圖中說明這些參數(shù)和磨損標準的關系。圖3-11描述了n和磨損標準的關系。當提高n時磨損標準的變化。(a)以Log(T)和Log(V)為坐標在不同的磨損標準的情況下所做的圖形(干條件)(b)以Log(T)和Log(V)為坐標在不同的磨損標準的情況下所做的圖形(濕條件)圖3-8 KC313在不同的磨損標準下由時間(T)和速度(V)為坐標所做的圖形(a)以Log(T)和Log(V)為坐標在不同的磨損標準的情況下所做的圖形(干條件)(b) 以Log(T)和Log(V)為坐標在不同的磨損標準的情況下所做的圖形(濕條件)(a)以Log(T)和Log(V)為坐標在不同的磨損標準的情況下所做的圖形(干條件)(b)以Log(T)和Log(V)為坐標在不同的磨損標準的情況下所做的圖形(濕條件)圖3-9 KC732在不同的磨損標準下由時間(T)和速度(V)為坐標所做的圖形(a)以Log(T)和Log(V)為坐標在不同的磨損標準的情況下所做的圖形(干條件)(b) 以Log(T)和Log(V)為坐標在不同的磨損標準的情況下所做的圖形(濕條件)(a) 以Log(T)和Log(V)為坐標在不同的磨損標準的情況下所做的圖形(干條件)(b)以Log(T)和Log(V)為坐標在不同的磨損標準的情況下所做的圖形(濕條件)圖3-10 KC5010在不同的磨損標準下由時間(T)和速度(V)為坐標所做的圖形 (a)以Log(T)和Log(V)為坐標在不同的磨損標準的情況下所做的圖形(干條件) (b) 以Log(T)和Log(V)為坐標在不同的磨損標準的情況下所做的圖形(濕條件)表3-7 刀具壽命常數(shù)的范圍劃分RangeCutting InsertCondition0 LogT 2.6KC313Dry0 Log T 4.1KC313Wet0 LogT 2.6KC5010Dry0 Log T 1.75KC5010Wet0 LogT 2.1KC732Dry0 Log T 2.4KC732Wet表3-8 在三種刀具材料下由C和n所做的磨損標準圖(干條件下)WearCriteria(mm)KC 313KC 5010KC732CnCnCnconstantconstantconstantconstantconstantconstant0.151420.2605180.2486300.2880.21650.2125600.2649640.3640.251960.2405960.27810990.3710.32380.2936050.27912330.3930.352500.2756120.27913990.4210.42630.2816250.28115030.4340.452820.2926250.27815170.4340.52920.2946300.27615770.4420.553020.2966320.27415920.4430.63130.3006380.27416110.444 表3-9 在三種刀具材料下由C和n所做的磨損標準圖(濕條件下)KC 313KC 5010KC732Wear criterion(mm)CnCnCn0.151670.2014970.298881.0500.3320.21870.2106190.3101051.960.3530.252280.2406100.3121297.180.39300.32440.2506280.3091545.250.42400.352670.2606260.3001782.380.45400.42910.2806190.2901918.670.46800.453380.3106150.2822137.960.49100.53030.3106160.279 2477.420.52400.553970.3406180.2782837.920.55400.64220.3506260.2793243.390.5830在這兩種條件下價值能夠得到提高,另外,濕潤條件n的價值要比干燥條件n的價值低,直到磨損標準達到0.38以后,干燥條件的n開始大于濕潤條件的 n。圖3-11B可以看出C在磨損標準所做的圖形中,在干和濕的條件下磨損標準提高時 C也隨之提高。然而,濕的條件下C的價值要比干的條件下高。這證明在整個切削過程中通過使用冷卻液提高刀具的壽命和提高磨損標準都可以一直的保護切削刀具材料。接下來,圖3-12A描述了KC732材料在干和濕的條件下n與磨損標準之間的關系。磨損價值隨著n的提高而提高。此外,濕曲線要比干曲線高。圖3-12B描述的一個常數(shù)C和磨損價值的比例關系。然而,濕條件的C曲線比干條件下的曲線高,這表面對于材料KC732來說使用冷卻液是有益處的。更為重要的這有利于提高磨損標準。C的價值越高,刀具的使用壽命也就變的越高。圖3-13A表明冷卻液對刀具性能的影響。因此。n越高,刀具的使用壽命就越低。圖3-13B可以看出通過使用冷卻液和提高磨損價值可以降低C,這說明刀具在濕潤的條件下,刀具的使用壽命比較短。之前研究的都是材料KC313和材料KC732,提高n就意味著刀具的壽命將被縮短。然而。大幅度的提高濕曲線C超過干曲線C的補償下降,KC313和KC732的使用壽命將延長。與次相反。KC5010對此正好相反。圖3-14A和圖3-14B是沒有被碳包裹的情況(KC313)。他表面了在干和濕的切削條件下不同磨損標準的切削速度的價值的關系。(a) n與磨損標準為坐標建立的關系圖(干和濕條件下)(b) C與磨損標準為坐標建立的關系圖(干和濕條件下)圖3-11 KC313的以泰勒常數(shù)與磨損標準為坐標建立的關系圖(a)n與磨損標準為坐標建立的關系圖(干和濕條件下)(b) C與磨損標準為坐標建立的關系圖(干和濕條件下)(a) n與磨損標準為坐標建立的關系圖(干和濕條件下)(b) C與磨損標準為坐標建立的關系圖(干和濕條件下)圖3-12 KC732的以泰勒常數(shù)與磨損標準為坐標建立的關系圖(a)n與磨損標準為坐標建立的關系圖(干和濕條件下)(b) C與磨損標準為坐標建立的關系圖(干和濕條件下) (a) n與磨損標準為坐標建立的關系圖(干和濕條件下)(b)C與磨損標準為坐標建立的關系圖(干和濕條件下)圖3-13 KC5010的以泰勒常數(shù)與磨損標準為坐標建立的關系圖(a)n與磨損標準為坐標建立的關系圖(干和濕條件下)(b) C與磨損標準為坐標建立的關系圖(干和濕條件下).這兩個條件表明當磨損標準增加的同時機床的成本下降。盡管如此,當成本增加的速度達到再增加就叨叨最佳時。圖3-15A和圖3-15B是由磨損標準在(0.4-0.6毫米)時,干和濕條件下經(jīng)濟性的比較。干切削的最佳切削速度是90米/分而濕切削的最佳切削速度是120米/分。在圖3-16A和圖3-16B中列出了在干和濕的條件下含有KC732涂層的速度與成本的函數(shù)關系。再次,當磨損標準增加的時候,成本下降。此外,干切削的最佳切削速度是260米/分,而濕切削的最佳切削速度是360米/分。這表面冷卻液對這種材料很重要,它不僅可以降低成本,而且還可以提高生產(chǎn)率。圖3-17A和圖3-17B概括了在干和濕的條件下,對涂有TIALN的材料KC5010的切削速度和成本之間的關系。當切削速度提高時,切削成本也隨之提高,當磨損標準提高,切削成本下降。在這兩種切削條件下,最佳的切削成本是在速度最低達到210米/分的時候。圖3-18A和圖3-18B描述的是在不同的磨損標準和不同的切削條件下KC732和KC5010的切削成本的比較。它可以明確地反映出對于KC732來說,冷卻液可以延長刀具的壽命。切削速度從260米/分到360米/分為最佳的切削速度。不過,對于KC5010來說在高速加工的情況下冷卻液可以使它的刀具壽命降低而且使切削成本提高。從上面這些數(shù)據(jù)可以看出對于KC732來說,在速度為210米/分-310米/分的速度范圍內干切削要比濕切削的經(jīng)濟效率高。當速度達到310米/分是效率最高。對于切削材料KC5010來說在干條件下速度為210米/分時切削成本有效。因此,不管KC732的成本,它的磨損都遠遠的超過沒有處理的KC313和KC5010。表3-10總結了干和濕條件下的最佳切削速度和最佳的切削成本。圖3-19A和圖3-19B列出的是沒有經(jīng)過處理的KC313在干和濕的條件下,不同的切削速度下切削成本和磨損標準之間的關系。圖3-20A和圖3-20B列出了處理后的KC732在干和濕的條件下的磨損標準函數(shù)。圖3-21A和圖3-21B列除了KC5010在干和濕的條件下的磨損標準函數(shù)。曲線表面在切削速度相同的條件下,增加磨損標準,切削成本下降。在圖3-22A表明在濕的條件下改變KC313的性能要比在干的條件下改變其性能使刀具的壽命降低。在圖3-22B可以看出KC732和KC5010經(jīng)過表面處理后的結果和側面的磨損情況。這清楚的表明在濕潤的條件下KC372表面涂TIN-TICN-TIN要比在干的條件下效果明顯。在濕的條件下對KC5010表面涂TIALN會減少它的刀具壽命。最后,KC732在所有條件下它的切削性能都要遠遠的超過KC5010。(a) 在不同磨損標準下,切削速度與成本的關系圖干切削條件下)(b) 在不同磨損標準下,切削速度與成本的關系圖(濕切削條件下)圖3-14 KC313的速度與切削成本的變化 (a)在不同磨損標準下,切削速度與成本的關系圖(干切削條件下) (b) 在不同磨損標準下,切削速度與成本的關系圖(濕切削條件下)(a) 在磨損標準為0.4毫米時,成本與切削速度的關系圖(b) 在磨損標準為0.6毫米時,成本與切削速度的關系圖圖3-15 以成本和速度為坐標軸,在干和濕兩種情況下分別在兩種磨損標準下的比較。 (a)在磨損標準為0.4毫米時,成本與切削速度的關系圖 (b) 在磨損標準為0.6毫米時,成本與切削速度的關系圖(a) 在不同的磨損標準的情況下,切削速度和成本的關系圖(干條件下)(b)在不同的磨損標準的情況下,切削速度和成本的關系圖(濕條件下)圖3-16 KC732的切削速度和成本的關系圖 (a)在不同的磨損標準的情況下,切削速度和成本的關系圖(干條件下)(b) 在不同的磨損標準的情況下,切削速度和成本的關系圖(濕條件下)(a) 在不同的磨損標準的情況下,切削速度和成本的關系圖(干條件下)(b) 在不同的磨損標準的情況下,切削速度和成本的關系圖(濕條件下)圖3-17 KC5010的切削速度和成本的關系圖 (a)在不同的磨損標準的情況下,切削速度和成本的關系圖(干條件下)(b) 在不同的磨損標準的情況下,切削速度和成本的關系圖(濕條件下)(a)在磨損標準為0.4毫米的情況下,成本和速度的關系圖(b)在磨損標準為0.6毫米的情況下,成本和速度的關系圖圖3-18 在不同的磨損標準的情況下,對KC732和KC5010的切削成本的比較。(a)在磨損標準為0.4毫米的情況下,成本和速度做出的關系圖 (b) 在磨損標準為0.6毫米的情況下,成本和速度做出的關系圖表3-10 在相同的磨損標準時,三種刀具材料的比較刀具類型磨損標準(mm)最佳成本/ 速度(m/min)干濕KC3130.647$ /9040$/90KC50100.634$ /21036$/210KC7320.629$ /26028.84$/360(a)在不同的切削速度下,磨損標準與切削成本的關系圖(干條件下)(b)在不同的切削速度下,磨損標準與切削成本的關系圖(濕條件下)圖3-19 KC313 磨損標準和成本的關系圖(a)在不同的切削速度下,磨損標準與切削成本的關系圖(干條件下)(b) 在不同的切削速度下,磨損標準與切削成本的關系圖(濕條件下)(a) 在不同的切削速度下,磨損標準與切削成本的關系圖(干條件下)(b)在不同的切削速度下,磨損標準與切削成本的關系圖(濕條件下)圖3-20 KC732 磨損標準和成本的關系圖(a)在不同的切削速度下,磨損標準與切削成本的關系圖(干條件下)(b) 在不同的切削速度下,磨損標準與切削成本的關系圖(濕條件下)(a) 在不同的切削速度下,磨損標準與切削成本的關系圖(干條件下)(b) 在不同的切削速度下,磨損標準與切削成本的關系圖(濕條件下)圖3-21 KC5010 磨損標準和成本的變化圖 (a)在不同的切削速度下,磨損標準與切削成本的關系圖(干條件下)(b) 在不同的切削速度下,磨損標準與切削成本的關系圖(濕條件下)(a) KC313在磨損標準為0.4毫米的情況下刀具的壽命圖(干和濕)(b)在磨損標準為0.4毫米的情況下,KC732和KC5010的刀具壽命圖(干和濕)圖3-22 在磨損標準為0.4 毫米,干和濕條件下,刀具壽命的比較(a)KC313在磨損標準為0.4毫米的情況下刀具的壽命圖(干和濕)(b) 在磨損標準為0.4毫米的情況下,KC732和KC5010的刀具壽命圖(干和濕)在實驗測試的速度范圍內,分別在干和濕的情況下,對刀具材料重新進行測試。結果提出了不經(jīng)過熱處理的KC313,表面涂有TIALN的KC5010和KC732。從圖3-23A和圖3-23B可以看出KC313在切削速度分別為100米/分、160米/分的情況下,理論和實驗的結果。理論和實驗結果的一致表明了泰勒公式在刀具壽命預言中是正確的。圖3-24A和圖3-24B表明KC5010在理論和實驗中的結果,在速度為280米/分和速度為390米/分的情況下完全的一致被證明。KC732的理論和實驗的數(shù)據(jù)在速度分別為280米/分和390米/分的情況下在圖3-25A和圖3-25B中被證明。本節(jié)介紹樣本結果與其他數(shù)字列入附錄。(a)速度為100米/分的情況下KC313理論和實驗的關系圖(b)速度為160米/分的情況下KC313理論和實驗的關系圖圖3-23 在不同速度的情況下KC313分別在干和濕時理論和實驗的結果(a)速度為100米/分的情況下KC313理論和實驗的關系圖 (b) 速度為160米/分的情況下KC313理論和實驗的關系圖 (a)KC5010在速度為280米/分的情況下理論和實驗的關系圖(b)KC5010在速度為390米/分的情況下理論和實驗的關系圖圖3-24 KC5010在不同的速度情況下,分別在干和濕時理論和實驗的關系(a)KC5010在速度為280米/分的情況下理論和實驗的關系圖(b) KC5010在速度為390米/分的情況下理論和實驗的關系圖(a)KC732在速度為280米/分時理論和實驗的關系圖(b)KC732在速度為390米/分時理論和實驗的關系圖圖3-25KC732在不同的速度情況下,分別在干和濕時理論和實驗的關系(a)KC732在速度為280米/分時理論和實驗的關系圖(b) KC732在速度為390米/分時理論和實驗的關系圖附 錄II(外文原文)3.5 Testing of Tool Life CostMachining cost is the sum of the machine tool cost and the cutter cost. The machine cost consists of idle cost, machining cost, and tool changing cost. The machining cost decreases with increased cutting speed; while the idle cost remains constant with changes in cutting speed. From the machining data handbook 24 the generalized machining cost equation is listed below: In order to optimize the cutting condition, it is essential to determine the mathematical relationship between the cuttings inserts type and cutting speed. In our study Taylors model will be used in relating the cutting tool life to the cutting speed:VT =C 3-2V= cutting speedT= Cutting time to produce a standard amount of flank wear (e.g. 0.2mm) n and C are constants for the material or conditions used.In order to determine constants n and C for the cutting inserts under study in machining 4140 steel and the conditions used in the experiments, a LogV against LogT is drawn and shown for the three types of cutting inserts under study Figure 3-8A, Figure 3-8B are for KC313 under dry and wet conditions, Figure 3-9A, and Figure 3-9B are for KC732. In addition, Figure 3-10A, and Figure 3-10B are for KC5010. It can be seen from the aforementioned figures that in-spite of considerable scatter in test measurements, the results fall reasonably well on a straight line. From the curves it can be seen that for the same cutting speed the tool life increases by increasing the wear criterion and introduction of coolant emulsion for KC313 and KC732. However, as seen in KC5010 tool life increases by increasing the wear criterion and decreases by introducing coolant. This negative behavior of KC5010 toward coolant emulsion and the effect of wear mechanisms behind it will be covered in Chapter 5. As well as the wear kinds on other inserts investigated in this research.Metal cutting studies focused on tools wear, tool life, and wear mechanisms. However, future research should pay more attention to other factors as well:l Wear criterion value set up by the factory system, which basically the tool wear threshold value that suits the factory product.l Types of tools used, such as carbide tips and high speed tools. Studying the variation of tool life wear under dry and wet cutting that effect the tool life equation constants (C,n) is useful. This will improve tool life because it also affects the economy of cutting 24.In order to determine the effect of cutting fluid on the selected wear criterion, relationship between different wear criteria and machining cost for the cutting inserts under HSM must be studied. The value of the tool life constants (C,n) for different wear criteria are extracted and plotted within the ranges listed in table (3-7). The values of the constants (C, n) extracted from Figure 3-8A/B, Figure 3-9AIB, and Figure 3-10 are shown in tables 3-8 and 3-9. Further explanation of the relationship between these parameters and wear criteria will be covered through out the next figures. Figure 3-11A represents the relationship between n and wear criterion. As wear criterion increase n.(a) Log (time) versus Log (speed) at different wear criteria (dry condition).(b) Log (time) versus Log (speed) at different wear criteria (wet condition)Figure 3-8 Time versus speed at different wear criteria KC313. (a) Log (time) versus Log (speed) at different wear criteri(drycondition). (b) Log (time) versus Log (speed) at different wear criteria (wet condition).(a) Log (time) versus Log (speed) at different wear criteria (dry condition)(b) Log (time) versus Log (speed) at different wear criteria (wet condition).Figure 3-9 Time versus speed at different wear criteria KC732 (a)Log (time) versus Log(speed) at different wear criteria (dry condition), (b) Log (time) versus Log (speed) at different wear criteria (wet condition)(a) Log (time) versus Log (speed) at different wear criteria (dry condition).(b) Log (time) versus Log (speed) at different wear criteria (wet condition)Figure 3-10 Time versus speed at different wear criteria KC5010 (a) Log (time) versus Log(speed) at different wear criteria (dry condition), (b) Log (time) versus Log (speed) at different wear criteria (wet condition).Table 3-7 Ranges of plotted tool life constants.RangeCutting InsertCondition0 LogT 2.6KC313Dry0 Log T 4.1KC313Wet0 LogT 2.6KC5010Dry0 Log T 1.75KC5010Wet0 LogT 2.1KC732Dry0 Log T 2.4KC732WetTable 3-8 Wear Criteria versus C and n for three cutting inserts (Dry Condition).WearCriteria(mm)KC 313KC 5010KC732CnCnCnconstantconstantconstantconstantconstantconstant0.151420.2605180.2486300.2880.21650.2125600.2649640.3640.251960.2405960.27810990.3710.32380.2936050.27912330.3930.352500.2756120.27913990.4210.42630.2816250.28115030.4340.452820.2926250.27815170.4340.52920.2946300.27615770.4420.553020.2966320.27415920.4430.63130.3006380.27416110.444Table 3-9 Wear Criteria versus C and n for three cutting inserts (Wet Condition).KC 313KC 5010KC732Wear criterion(mm)CnCnCn0.151670.2014970.298881.0500.3320.21870.2106190.3101051.960.3530.252280.2406100.3121297.180.39300.32440.2506280.3091545.250.42400.352670.2606260.3001782.380.45400.42910.2806190.2901918.670.46800.453380.3106150.2822137.960.49100.53030.3106160.279 2477.420.52400.553970.3406180.2782837.920.55400.64220.3506260.2793243.390.5830values increase for both cutting conditions. In addition, n values for wet condition is lower than dry conditions up until wear criterion 0.38 after which n for wet starts to get bigger. Figure 3-11B shows C values versus wear criterion, and reveals C increases as the wear criterion increases for both dry and wet cutting. However, C values under wet condition are getting higher than under dry conditions. This proves the increase in tool life by introducing coolant emulsion and by increasing the wear criterion for this cutting tool material during cutting.Next, Figure 3-12A represents values of n with respect to wear criterion for KC732 material under dry and wet conditions. As the wear criteria increase n values increase. Furthermore, wear curve is higher than dry curve. Figure 3-12B presents a proportional relationship between constant C values and wear criterion. However, wet C curve is higher than dry curves, which indicates the benefit of using coolant emulsion for material KC732. This benefit becomes more essential by increasing the wear criterion. The higher the C value; the higher the tool life becomes. Figure 3-13A shows the effect of introducing coolant emulsion on cutting tool performance. Therefore, the higher n; the lower the tool life is. Figure 3-13B shows the drop in C values by increasing the wear criterion and coolant usage; thus indicating a shorter tool life in wet cutting condition. During the previous curves of KC313 and KC732 materials, the increase in n values was an indication off shortened tool life. However, the huge increase in wet C curves over dry C over compensated the drop and elongated tool life for KC313 and KC732. In contrast, the case is for KC5010. Figure 3-14A and Figure 3-14B are for uncoated cemented carbide (KC313). It shows the relationship between cost cutting speeds for different wear criteria under dry and wet cutting.(a) n values versus wear criterion (wet and dry).(b) C values versus wear criterion (wet and dry).Figure 3-11 Taylors constants for KC313 versus wear criteria,(a) n values versus wear criteria (wet and dry), (b) C values versus wear criteria (wet and dry).(a) n values versus wear criterion (wet and dry).(b) C values versus wear criterion (wet and dry).Figure 3-12 Taylors constants for KC732 versus wear criteria, (a) n values versus wear criteria (wet and dry), (b) C values versus wear criteria (wet and dry).(a) n values versus wear criterion (wet and dry). (b) C values versus wear criterion (wet and dry)Figure 3-13 Taylors constants for KC5010 versus wear criteria, (a) n values versus wear criteria (wet and dry), (b) C values versus wear criteria (wet and dry).Both conditions indicate as the wear criteria increases the machining cost decreases. Nonetheless, as the speed increases the cost reaches optimum value and then increases. Figure 3-15A and Figure 3-15B show economical comparison between dry and wet cutting at (0.4 and 0.6 mm) wear criterion. Optimum cutting speed for dry cutting is 90 m/min while 120 m/min is for wet cutting.Cost as a function of speed is presented in Figure 3-16A and Figure 3-16B for sandwich coating (KC732) under dry and wet conditions. Again, as wear criteria increases, cost decreases. Furthermore, the optimum speed of 260 m/min of dry cutting, increased to 360 m/min in cases of wet cutting. This indicates the importance of coolant with this material not only decreases cost but also increases productivity.Figure 3-17A and Figure 3-17B summarize the relationship of cost and speed for coated tools with TiALN (KC5010) under dry and wet cutting conditions. As the cutting speed increases the cost increases and as the wear criteria increases the cost decreases. The optimum cost was at the lowest speed (210 m/min) in both machining conditions.A cost comparison between KC732 and KC5010 at different wear criteria and machining conditions is presented in Figures 3-18A and 3-18B. It can be seen that KC732 responded positively to coolant in terms of extended tool life, and increased the optimum cutting speed from 260m/min to 360 nn/min. Nonetheless, coolant introduction to KC5010 at high speed cutting lowered the tool life and increased machining cost. The data presented in the aforementioned figures shows that dry cutting is more cost effective than wet cutting within speed range of 210 m/min-310 m/min for KC732 and vise versa at any speed higher than 310m/min. Cutting tool material KC5010 is cost effective at dry and 210 m/min. Therefore, in spite of the cost of the KC732; it is proven to be superior over KC313 (uncoated) and KC5010 in wear cost. Table 3-10 summarizes the optimum values of cost and speed under wet and dry cutting.Figures 3-19A, and 3-19B for KC313 (uncoated) show the relationship between costs and wear criterion at different cutting speeds under dry and wet conditions. Figure 3-20A, and Figure 3-20B are plotted for KC732 presenting cutting cost as a function of wear criteria for dry and wet conditions. Figure 3-21A and Figure 3-21B are plotted for KC5010. The curves show that for the same cutting velocity, by increases the selected wear criterion, the cost decreases.The improved performance of (KC313) under wet over dry cutting in terms off tool life is presented in Figure 3-22A. The results of the two coatings testing methods, of flank wear for the KC732 and KC5010 are shown in Figure 3-2B. Clearly this indicates improvement in cutting inserts life with TiN-TiCN-TiN coatings (KC732) under wet over dry cutting, and reduction in tool life of TiALN coating (KC5010) on wet cutting. Finally, KC732 provides superior performance under all cutting conditions over KC5010.(a) The variation of cost versus cutting speed at different wear criteria (dry ).(b) The variation of cost versus cutting speed at different wear criteria (wet).Figure 3-14 Cost variation with speed for KC313, (a) The variation of cost versus cutting speed at different wear criteria (dry), (b) The variation of cost versus cutting speed at different wear criteria (wet).(a) The variation of cost versus cutting s
收藏