0.1t普通座式焊接變位機設(shè)計【25張CAD圖紙】
喜歡這套資料就充值下載吧。資源目錄里展示的都可在線預(yù)覽哦。下載后都有,請放心下載,文件全都包含在內(nèi),【有疑問咨詢QQ:414951605 或 1304139763】=喜歡這套資料就充值下載吧。資源目錄里展示的都可在線預(yù)覽哦。下載后都有,請放心下載,文件全都包含在內(nèi),【有疑問咨詢QQ:414951605 或 1304139763】=
畢 業(yè) 設(shè) 計 任 務(wù) 書班 級 材料2002級 學(xué)生姓名 牛克選 學(xué) 號 發(fā)題日期: 2006年03月10日 完成日期:畢業(yè)當年的 月 日題 目 變位器工裝設(shè)計0.1 t數(shù)控座式焊接變位機 1、 設(shè)計原始資料 焊接變位機是將工件回轉(zhuǎn)、傾斜,以便使工件上的焊縫置于水平和船形位置的機械裝置,主要用語機架、機座、機殼等非長形工件的焊接。 座式焊接變位機是應(yīng)用最廣的一種焊接變位機,載重量一般為150噸,本設(shè)計主要進行0.1 t的通用型座式焊接變位機的設(shè)計,該裝備是以電動機減速機驅(qū)動工作臺回轉(zhuǎn)并傾斜的焊接變位機械,是為適應(yīng)相關(guān)工件焊接需要而出現(xiàn)的焊接裝備。 2、 設(shè)計各部分內(nèi)容及時間分配:(共 14 周)第一部分 查閱文獻及調(diào)研( 1周 )第二部分 設(shè)計方案制定,并進行相關(guān)的計算校核 ( 2 周 )第三部分 繪制設(shè)備結(jié)構(gòu)與零部件圖 ( 8 周 ) 第四部分 論文書寫 ( 2周 )第五部分 ( 周 )評閱及答辯( 1周 ) 3、計算說明書內(nèi)容 1)文獻綜述 2)方案選擇與確定 3)結(jié)構(gòu)計算與校核 4)計算結(jié)果與致謝 5)參考文獻 4、 應(yīng)交出之圖紙及文件 1)完成A0當量圖紙大于3張, 2)設(shè)計說明書1份 3)英文翻譯大于10000字符 4)論文日志 5、 參考文獻 1)各類機械設(shè)計手冊 2)王政編,焊接工裝夾具及變位機械圖冊 3)前幾屆畢業(yè)學(xué)生的畢業(yè)論文 等等 指導(dǎo)教師: 年 月 日審 批 人: 年 月 日西南交通大學(xué)本科畢業(yè)設(shè)計(論文) 第 I 頁西 南 交 通 大 學(xué)本科畢業(yè)設(shè)計(論文)0.1t普通座式焊接變位機年 級:2002級學(xué) 號:20023237姓 名:賀有旭專 業(yè):材料加工工程指導(dǎo)老師:周友龍2006年 6月院 系 材料科學(xué)與工程學(xué)院 專 業(yè) 材料加工工程 年 級 2002級 姓 名 賀 有 旭 題 目 0.1t普通座式焊接變位機 指導(dǎo)教師評 語 指導(dǎo)教師 (簽章)評 閱 人評 語 評 閱 人 (簽章)成 績 答辯委員會主任 (簽章) 年 月 日 西南交通大學(xué)本科畢業(yè)設(shè)計(論文) 第 8 頁畢業(yè)設(shè)計(論文)任務(wù)書班 級 材料025班 學(xué)生姓名 賀 有 旭 學(xué) 號 20023237 發(fā)題日期:2006年 3月10日 完成日期: 6月 15 日題 目 0.1t普通座式焊接變位機 1、本論文的目的、意義 焊接變位機是將工件回轉(zhuǎn)、傾斜,以便使工件上的焊縫至于水平和船形位置的機械裝置,主要用于機架、機座、機殼等非長形工件的焊接。 座式焊接變位機是應(yīng)用最廣的一種焊接變位機,載重量一般為150噸,本設(shè)計主要進行0.1t的普通座式焊接變位機的設(shè)計,該裝備是以電動機減速機驅(qū)動工作臺回轉(zhuǎn)并傾斜的焊接變位機械,是適應(yīng)相關(guān)工件焊接需要而出現(xiàn)的焊接設(shè)備。 2、學(xué)生應(yīng)完成的任務(wù): (1) 設(shè)計圖紙A0當量大于3張; (2) 設(shè)計說明書一份; (3) 英文翻譯一份; (4) 設(shè)計日志一份 3、論文各部分內(nèi)容及時間分配:(共 15 周)第一部分 查閱文獻及調(diào)研 (1周)第二部分總體設(shè)計方案的比較論證及擬定 (2周)第三部分傳動機構(gòu)的設(shè)計及計算校核、修改 (3周)第四部分繪制設(shè)備機構(gòu)及零部件圖 (8周)第五部分畢業(yè)論文的撰寫 (2周)評閱及答辯 ( 周)備 注 指導(dǎo)教師: 年 月 日審 批 人: 年 月 日摘 要焊接變位機是一種焊接輔助設(shè)備,它與焊接操作機、焊接滾輪架并稱為焊接輔助設(shè)備中三大機。焊接變位機是應(yīng)焊接行業(yè)的機械化、自動化發(fā)展需要而產(chǎn)生的。焊接變位機作為一種焊接配套設(shè)備,用于管子橫向?qū)雍附?,管子與法蘭內(nèi)外環(huán)縫焊接,管子對管子全位置焊接。焊接變位機可水平翻轉(zhuǎn)角度,通過工作臺的回轉(zhuǎn)及翻轉(zhuǎn)運動使工件上焊縫處于最理想的位置進行焊接,從而大大提高焊縫質(zhì)量,減輕焊工勞動強度,尤其是適合焊接各種軸類、盤類、筒體等回轉(zhuǎn)工件的理想設(shè)備。本設(shè)計分析了解國內(nèi)外焊接變位機的發(fā)展狀況、以及焊接變位機在焊接機器人中的應(yīng)用,設(shè)計了一種0.1噸小型座式焊接變位機。該變位機具有兩個自由度,有兩套獨立的驅(qū)動和傳動裝置。可以方便實現(xiàn)工件的旋轉(zhuǎn)和傾斜翻轉(zhuǎn),從而能使焊縫變化到平焊位置或“船形”位置。文中對驅(qū)動力的計算、機架的設(shè)計進行了說明,尤其是對傳動裝置的設(shè)計進行了重點說明。本焊接變位機采用直流電機減速機驅(qū)動工作臺回轉(zhuǎn)并傾斜,具有運動精度高、慣量小、制動性和穩(wěn)定性好,可實現(xiàn)無級調(diào)速,方便實現(xiàn)正反轉(zhuǎn)等優(yōu)點。批量生產(chǎn)可獲得比較高的經(jīng)濟效益。關(guān)鍵詞: 焊接變位機; 變位自由度; 焊接輔機; 焊接自動化設(shè)備;AbstractWelding positioner is a kind of welding auxiliary equipment, it was known as the three planes in welding auxiliary equipment with welding manipulator, welding roller bed. Welding positioner was designed with the development of welding industry mechanization, and automation. As a welding auxiliary machine, welding positioner was used in pipes landscape orientation welding, pipe and flanges inside and outside central linking welding, pipe welding in all location. Though the gyration and retroflexion of the workbench, the welding positioner can make the welding line to an ideal position, which can improve the quality of the welded joint, reduce welders workload. It is ideal equipment especially fit to weld the kinds of workpiece, just like the shaft, tray, canister, and so on.By understanding the welding positioner s development in domestic and overseas, and the positioner used in welding robot is described in the paper. A small block 0.1 ton s of welding positioner is designed. The positioner has two freedoms of motions and two unattached formula driving device and gearing. It can easily achieve the gyration and the inclination of the workpiece, thereby changing welding seam to downhand position or “ship form” position. the count of driving power is calculated, the framework of the welding positioner is designed, especially the gearing.This welding positioner used DC motor and slowdown plane to drive the workbench to gyration or inclination. It has some advantages, such as a high-precision movement, inertia small, good braking and stability. It also can easily achieve stepless speed regulation, positive or negative turns. Because of its notables economic benefit, if it would been produced largely.Key words: welding positioner,freedom of deflection,welding auxiliary machine, welding automatic equipment.目錄第一章 緒論11.1 設(shè)計焊接變位機的意義11.2 國內(nèi)外焊接變位機發(fā)展簡介11.3 我國焊接輔助設(shè)備簡介31.3.1 我國焊接輔助設(shè)備的發(fā)展歷程31.3.2 焊接輔助設(shè)備的發(fā)展趨勢41.4 關(guān)于焊接機器人51.4.1 國內(nèi)焊接機器人技術(shù)的發(fā)展51.4.2 我國焊接機器人的應(yīng)用狀況51.4.3 應(yīng)用焊接機器人的意義61.4.4 我國焊接機器人應(yīng)用工程71.4.5 焊接機器人的最新應(yīng)用技術(shù)81.5 關(guān)于焊接變位機的幾個基本定義91.5.1 焊接變位機的定義91.5.2 主自由度及全功能焊接變位機91.5.3 焊接變位機的變位自由度101.5.4 變位機的第一主參數(shù) - 額定負荷101.6 焊接變位機的分類111.6.1 焊件變位機的類型111.6.2 焊機變位機械的類型131.6.3 焊工變位機的類型141.7 幾種常見的焊件變位機的類型及特點141.8 設(shè)計本焊接變位機的目的和意義16第2章 總體設(shè)計172.1 本焊接變位機總體設(shè)計及適用范圍172.2 設(shè)計方案的確定17第3章 傳動部分設(shè)計213.1 傳動部分的總體設(shè)計要求213.2 傳動系統(tǒng)的分析和擬定213.3 本焊接變位機傳動系統(tǒng)的確定233.3.1工作臺回轉(zhuǎn)系統(tǒng)233.3.2 工作臺傾斜系統(tǒng)233.4 電動機的選擇243.4.1 電動機類型的選擇243.4.2 電動機功率的確定273.4.3電動機轉(zhuǎn)速的驗證333.5 傳動比的擬定及確定343.5.1 總傳動比的確定343.5.2 各級傳動裝置傳動比的分配343.5.3.計算傳動裝置的運動和動力參數(shù)363.6 蝸輪、蝸桿的選擇及校核383.6.1 蝸桿傳動的特點383.6.2 蝸桿頭數(shù)和蝸輪齒數(shù)的選擇393.6.3 蝸桿傳動的強度計算403.7 齒輪的設(shè)計與校核423.7.1 工作臺傾斜機構(gòu)中的齒輪的設(shè)計與校核423.8 諧波齒輪減速器的選擇443.9 軸的設(shè)計與校核473.9.1 軸的結(jié)構(gòu)設(shè)計原則473.9.2軸的初估473.9.3 軸的強度校核483.10 軸承的選擇與校核523.10.1 軸承的選擇523.10.2 軸承的校核52第4章 機架的設(shè)計554.1 機架的設(shè)計554.2 機架焊接結(jié)構(gòu)設(shè)計564.2.1 機架應(yīng)用焊接結(jié)構(gòu)存在的問題564.2.2 焊接結(jié)構(gòu)的設(shè)計措施57結(jié)論58致 謝59參考文獻60An automated welding operation planning systemfor block assembly in shipbuildingKyu-Kab Cho*, Jung-Guy Sun, Jung-Soo OhAbstractThe block assembly process is one of the most important manufacturing processes for shipbuilding. Since block is composed of several steel plates and steel sections with predetermined shapes according to ship design, the welding operation planning to construct a block is a critical activity for shipbuilding, but this activity has traditionally been experience based. Thus, it is required to develop an automated welding operation planning system to assemble blocks. This paper describes the development of an automated welding operation planning system for block assembly in shipbuilding. Based on the information about parts, topological relationship between parts and assembly sequences for block, the developed system performs the determination of welding postures, welding methods, welding equipment and welding materials. The developed system implemented successfully for real blocks constructed in shipyard.Keywords: Block assembly; Expert system; Operation planning; Welding process1. IntroductionShipbuilding is traditionally a labor-intensive assembly industry that employs the welding process as a basic production technology. In shipbuilding, there are several types of manufacturing process planning for cutting and bending, assembly, out- fitting, and erection. Among these process planning activities, the assembly process planning is by far the most important, since the construction process for a hull block comprises approximately 4850% of the total shipbuilding process 1,2. The main operation for block assembly is the welding operation. The welding operation planning problems in block assembly are very difficult to solve because all blocks are different in size, type, and constituting sub-assemblies that depend on the types of ships. Also, since this activity has traditionally been experienced-based, welding operation planning in shipbuilding has been performed manually. Thus, it is very important to develop an automated weldingoperation planning system for shipbuilding. There is relatively very little literature available on automated welding operation planning systems for shipbuilding 3,4. This paper deals with the development of an automated welding operation planning system for block assembly in shipbuilding. The rule-based expert system for welding operations has been developed using Smart Elements as an expert system tool. The developed system is demonstrated and verified by using actual blocks in the shipyard.2. Development of an automated welding operation planning system2.1. System frameworkThe automated welding operation planning system developed in this paper consists of four modules: welding postures module, welding methods module, welding equipment module, and welding materials module. The framework of this system is shown in Fig. 1.2.2. Determination of welding posturesThis module determines the posture of the welding operator. Welding posture is reasoned by considering connection types and positional direction between two connected parts, direction information of assembly base part, existence of turnover, and assembly level.Connection types are classified into butt type (B) and fillet type (T), as shown in Fig. 2. The four types of welding postures, down posture (D), overhead posture (O), horizontal posture (H), and vertical posture (V), are considered in this paper, as shown in Fig. 2 5,6. The most stable and easiest welding posture is the down welding posture, and the most difficult one is the overhead welding posture. The welding operator determines an efficient welding posture according to the working conditions.For relationship of connection between two parts that are welded, one part is considered as the base and the other is connected to the base. The part that is considered as a base is represented as PartFrom and the other that is connected to the base is represented as PartTo. The levels of block assembly to assemble steel plates and sections into the final block are classified into subassembly (SA) level, unit block assembly (UBA) level, and final block assembly (FBA) level.Subassembly levels may be divided into small subassembly (SSA) levels and intermediate subassembly (ISA) levels according to the size and weight of the subassembly as shown in Fig. 3.For determining welding postures, the block assembly levels are classified into two groups. The first group is the small subassembly level; the second group consists of the intermediate subassembly, the unit block assembly, and the final block assembly levels. The reason for this grouping is that there is no turnover process in the small subassemblylevel, but the assembly levels belonging to the second group may have turnover processes. Turnover processes cause the change of welding postures that are determined before the turnover process.2.2.1. Determining welding postures in the first group levelThe following are examples of rules to determine the welding posture for a small subassembly level. The connection types of welding joints between two parts used in this rule are: Butt type (0) and T type (1).(1) IF (Part Level=Small Assembly)(Connection Type=1)(Direction of Assembly Base=Connection Direction)(PartFrom=not Assembly Base Part)(PartTo=not Assembly Base Part)THEN (Welding Posture=H)(2) IF (Part Level=Small Assembly)(Connection Type=1)(Direction of Assembly Base Part=not Connection Direction)(PartFrom=not Assembly Base Part)(PartTo=not Assembly Base Part)THEN (Welding Posture=V)An example of a small subassembly is shown in Fig. 4. In this case, there are ve parts, and the assembly base parts are A and B. The relationships between the parts are listed in Table 1 and the results of the determination of welding postures for this example are shown in Table 2.2.2.2. Determining welding postures in the second group levelsIn the second group levels, information for determining welding postures is the same as for the small subassembly level. Welding postures are determined between the assembly base part and other parts that are connected to the assembly base part in a similar way to the small subassembly. Other welding postures are determined between parts that are not an assembly base part. If turnover processes exist, the direction of the assembly base part is changed at an angle of 180 and the welding posture is also changed. An example of the rules for the second group levels are as follows:(1) IF (Part Levelnot Small Assembly)(Connection Type is 0)(Direction of Assembly Base PartConnection Direction)(PartFromnot Assembly Base Part)(PartTonot Assembly Base Part)THEN (Welding PostureH)(2) IF (Part Levelnot Small Assembly)(Connection Type0)(Direction of Assembly Base Partnot Connection Direction)(PartFromnot Assembly Base Part)(PartTonot Assembly Base Part)THEN (Welding PostureV)2.3. Determination of welding methodsThis module determines the welding methods based on welding postures by rule-based reasoning. Welding methods used in this paper are summarized in Table 3, according to the connection types of welding joints and welding processes 7.In general, there are several welding techniques such as braze welding, forge welding, gas welding, resistance welding, induction welding, arc welding, and special welding. Considering the features of shipbuilding, the welding process used in the shipyard is the arc welding process. Arc welding is a process in which coalescence is obtained by heat produced from an electric arc between the work and an electrode 8.Arc welding is classified into several types, according to the welding mechanisms such as shield metal arc welding (SMAW), flux cored arc welding (FCAW), submerged arc welding (SAW), and electrogas arc welding (EGW). SMAW is one of the oldest, simplest, and most versatile joining processes. Currently, about 50% of most industrial and maintenance welding is performed by this process, but this process is used approximately less than 5% at most large shipyards. In FCAW, an electrode that is tubular in shape is used, and if necessary, the welding area is shielded by carbon dioxide. In SAW, the weld arc is shielded by granular flux, consisting of lime, silica, manganese oxide, calcium fluoride, and other materials. The flux is fed into the weld zone by gravity flow through a nozzle. EGW is used primarily for welding the edges of sections vertically in one pass, with the pieces placed edge to edge (butt type) 9. To build the knowledge base for the determination of welding methods, knowledge is aquired from welding handbooks and experts. Input information of this module is geometrical information that is provided from CAD system and the welding posture determined by welding posture determination module. The knowledge is represented by rules. The examples of the rule for the determination of welding methods are as follows:(1) IF (Connection Type=0)(Groove=none)(Welding Posture=O)(6Thickness50)THEN (Welding Method=SMAW-MANUAL BUTT)(2) IF (Connection Type=1)(Leg Length4.5mm)(Welding Posture=O, H, V)THEN (Welding Method=FCAW-FILLET)2.4. Determination of welding equipmentThis module selects the appropriate welding equipment by rule-based reasoning based on information about welding postures and welding methods. Table 4 shows the relationship between welding methods and welding equipment. After determining welding methods, welding equipment is automatically selected by using the information contained in Table 4.2.5. Determination of welding materialsThis module determines the most proper welding materials by rule-based reasoning, based on information about welding postures, methods, and equipment. In general, steels used for block assembly are mild steels and high tensile steels. Mild steel is a rolled plate, the tensile strength of which is less than 50 kg f/mm2. High tensile steel is a low-carbon alloy steel, the tensile strength of which is more than 50 kg f/mm2 with a yield strength of more than 30 kg f/mm2. Mild steel has four grades: A, B, D, and E. High tensile steel has three grades: AH, DH, and EH 9. The following are examples of rules to determine welding materials.(1) IF (Welding Posture=D)(Welding Methods=FCAW FILLET)(Welding Equipment=LN-7 or LN-9)(Steel Grade=(Mild Steel A,B,D,E) Highten-sile Steel AH,DH)THEN (Welding Material=MX-200H)(2) (Welding Posture=D)(Welding Methods=SAW Bothside BUTT)(Welding Equipment=SW-41)(Steel Grade=Mild Steel A,B,D,E)THEN (Welding Material=L-8xs-707EF H-14XS705EF L-8XNSH52)3. System implementation and discussionsIn order to demonstrate and to verify the automated welding operation planning system for block assembly, a block located at the upper deck part of crude oil carrier is examined. Fig. 5 shows the structure of an example block and Fig. 6 represents its hierarchical structure. An example final block shown in Fig. 5 has two unit blocks, one intermediate subassembly, 15 small subassemblies, and 169 component parts. The final welding operation planning for the unit block assembly level is shown in Fig. 7. The results are verified by an expert process planner and implemented by using actual blocks in an assembly shop.4. ConclusionAn automatic welding operation planning system consisting of four modules (welding postures, welding methods, welding equipment, and welding materials) is developed by using Smart Elements as an expert system tool. The developed system is verified by using actual block and implemented in a block assembly shop.AcknowledgementsThis work is supported by the research grant from Hyundai Heavy Industries Co., Ltd.References1 H. Nakayama, Expert process planning system of CIM for shipbuilding, Proceedings of International Conference on Computer Applications in Shipbuilding, 1994, pp. 12.5512.66.2 Ship and Ocean Foundation, Research Report on Shipbuilding CIMS Pilot Model Development, Japan, 1991.3 H.B. Cary, Summary of computer programs for welding engineering, Welding Journal 70 (1) (1991) 4046.4 D.M. Barborak, D.W. Dickinson, R.B. Madigan, PC-based expert system and their applications to welding, Welding Journal 70 (1) (1991) 2938.5 J. Weber et al., Welding expert focus on the future, Welding Journal 69(7) (1990) 3746.6 K.K. Cho et al., An automatic process planning system for block assembly in shipbuilding, Annals of the CIRP 45 (1) (1996) 4144.7 J. Gustafsson, M. Heinakari, Experiences with CIM in shipbuilding, Welding Journal 70 (3) (1991) 2735.8 B.H. Amstead et al., Manufacturing Processes, 8th ed., Wiley, New York, 1987, pp. 156157.9 S. Kalpakjian, Manufacturing Engineering and Technology, 3rd, Addison-Wesley, Reading, MA, 1995, pp.862870.自動焊接操作系統(tǒng)Kyu-Kab Cho*, Jung-Guy Sun, Jung-Soo Oh摘要:船舶建造的分組裝配作業(yè)加工是其最重要的制造法。因為塊由若干鋼板塊和型鋼同預(yù)定形狀按照船舶設(shè)計組成的,所以對船舶建造來說焊接操作計劃構(gòu)造塊是一項關(guān)鍵任務(wù),但是這個是以傳統(tǒng)經(jīng)驗為基礎(chǔ)的,因此,有必要研制一種自動焊接操作計劃系統(tǒng)來組裝塊。這篇論文描述了船舶建造分組裝配作業(yè)的自動焊接操作計劃系統(tǒng)的發(fā)展。根據(jù)零件和裝配次序的拓撲關(guān)系介紹部分,系統(tǒng)完成確定焊接位置,焊接方法,焊接設(shè)備和焊接材料。系統(tǒng)成功地實現(xiàn)了船舶建造塊的構(gòu)造。關(guān)鍵詞:分組裝配作業(yè);專家系統(tǒng);操作計劃;焊接過程 簡介船舶建造是傳統(tǒng)的勞動強度大的組裝工業(yè),焊接是其基本生產(chǎn)技術(shù)。在船舶建造中,存在幾種類型切割,裝配制造法。在這些工藝設(shè)計活動之中,裝配工藝計劃是最重要的,因為船體結(jié)構(gòu)加工大約包含了船舶建造加工總數(shù)的40%-50%。焊接操作是分組裝配作業(yè)的主要操作。焊接操作規(guī)劃問題在裝配過程中是很難解決的,因為部件的大小, 類型,以及組成的取決于船的類型的亞部件是不同。同樣地,因為這些活動是以傳統(tǒng)經(jīng)驗為基礎(chǔ)的,所以,焊接操作在船舶建造中是人工執(zhí)行的。因此,在船舶建造中,研制自動焊接操作計劃系統(tǒng)是非常重要的。對船舶建造,幾乎沒有自動焊接操作計劃系統(tǒng)的文獻可以利用。這篇論文涉及船舶建造分組裝配作業(yè)的自動焊接操作計劃系統(tǒng)的研制。這種基于規(guī)則的將靈敏元件當做專家系統(tǒng)工具的焊接操作專家系統(tǒng)已經(jīng)被研制出來了。這個系統(tǒng)通過造船廠的實際的部件已經(jīng)被證明和復(fù)核。 自動焊接操作系統(tǒng)的發(fā)展2.1. 系統(tǒng)框架在此論文里自動焊接操作計劃系統(tǒng)由焊接位置模數(shù)、焊接方法模數(shù)、焊接設(shè)備模數(shù),并且焊接材料模數(shù)組成四模數(shù)。這個系統(tǒng)的框架將在圖1中展示。2.2. 焊接位置的確定模數(shù)決定焊工的焊接位置??紤]到兩連接零件連接類型和位置,方向部件的方向信息,翻轉(zhuǎn)的存在以及裝配等級等因素,焊接位置是受影響的。連接類型被分為對接和角接類型,如圖所示。這篇論文考慮了四種焊接位置:向下焊接,水平焊接,垂直焊接和仰焊接,如圖所示。最穩(wěn)定的和輕松的焊接位置是下向焊位置,最困難的是仰焊位置。根據(jù)工作條件焊工決定采用一種有效的焊接位置。兩焊接部的連接的關(guān)系,一個部分被認為是基體,而另一個被認為是連接在這個基體上。被認為是基體的部分被當做partfrom而連接到基體的部分被當做PartTo。裝配鋼板和型鋼變成最后的部件的分組裝配作業(yè)水平被分為組件水平(SA),單元塊組裝水平(UBA)和最后的分組裝配作業(yè)水平(FBA)。根據(jù)組件的尺寸和重量組件水平可以被分成小組件水平(SSA)和中間的組件水平(ISA)如圖所示。因為決定焊接位置,分組裝配作業(yè)水平被分為組。第一個組是小部件水平;第二組由中間部件組成,為單元塊組裝和最后的分組裝配作業(yè)水平。這樣分組的理由是看是否有翻轉(zhuǎn)的加工小部件,但是裝配水平屬于第二組的也許也有翻轉(zhuǎn)加工。翻轉(zhuǎn)加工之前的決定產(chǎn)生致使焊接位置發(fā)生變化。2.2.1. 決定焊接位置的第一組水平以下用來決定焊接位置的規(guī)則適合于小部件水平。用于此規(guī)則焊接接頭的連接類型是:對接式(0)和T類型(1)。(1) IF (Part Level=Small Assembly)(Connection Type=1)(Direction of Assembly Base=Connection Direction)(PartFrom=not Assembly Base Part)(PartTo=not Assembly Base Part)THEN (Welding Posture=H)(2) IF (Part Level=SmallAssembly)(Connection Type=1)(Direction of Assembly Base Part=not Connection Direction)(PartFrom=not Assembly Base Part)(PartTo=not Assembly Base Part)THEN (Welding Posture=V)小部件的例子在圖中列出。這里有五部分,部件基體部分是A和B。這些部分之間的關(guān)系在表格1中列出,這些例子確定焊接位置的結(jié)果將在表格中列出。2.2.2. 決定焊接位置的第二組類水平在第二組類水平, 決定焊接位置的情況同小部件水平是一樣的。其他的焊接位置取決于非部件基體間的部件。如果存在翻轉(zhuǎn)加工,部件基體的方向是以180的角度變化,焊接位置也同樣地變化。適合于第二組類水平的例子規(guī)則的如下:(1) IF (Part Level=not SmallAssembly)(Connection Type is 0)(Direction of Assembly Base Part=Connection Direction)(PartFrom=not Assembly Base Part)(PartTo=not Assembly Base Part)THEN (Welding Posture=H)(2) IF (Part Level=not SmallAssembly)(Connection Type=0)(Direction of Assembly Base Part=not Connection Direction)(PartFrom=not Assembly Base Part)(PartTo=not Assembly Base Part)THEN (Welding Posture=V)2.3. 焊接方法的確定按規(guī)則根據(jù)焊接位置此模數(shù)決定焊接方法。根據(jù)焊接接頭的連接類型和焊接過程7,此論文中使用的焊接方法被歸納于表格中。通常,有若干焊接技術(shù)比如釬焊、壓力焊、氣保焊、電阻焊接、感應(yīng)焊接、電弧焊以及特種焊接??紤]船舶建造的特色,被用于這造船廠的焊接方法是電弧焊接法。電弧焊是由工件和電極間電弧產(chǎn)生的熱而獲得的接合法。電弧焊根據(jù)焊接機構(gòu)被分為若干類型,例如保護金屬極電弧焊(SMAW),藥芯焊絲電弧焊(FCAW),埋弧焊(SAW)和氣體保護電弧焊(EGW)。保護金屬極電弧焊是其中最老的,最簡單的,最靈活多變的焊接方法。目前大約50的工業(yè)焊接采用這種方法,但是在大多數(shù)造船廠中這種加工方法的使用大約小于5%。在藥芯焊絲電弧焊,在外形上管狀電極是使用的,必要時,焊縫橫截面面積被二氧化碳保護。在埋弧焊,焊接電弧被由石灰、硅石、氧化錳、氟化鈣及其他材料組成的顆粒狀熔劑遮擋。焊劑是靠重力流過焊縫進入焊接區(qū)的。氣體保護焊主要適合于焊接型鋼的邊緣,(對接式)9。建立這一知識庫適合于焊接方法的確定。知識庫數(shù)據(jù)是從焊接手冊和專家取得。此模數(shù)的輸入信息是由CAD系統(tǒng)和焊接位置提供的幾何信息,焊接位置由焊接位置確定模數(shù)確定。數(shù)據(jù)由準則代替。確定焊接方法的準則例子如下:(1) IF (Connection Type=0)(Groove=none)(Welding Posture=O)(6Thickness t 50)THEN (Welding Method=SMAW-MANUAL-BUTT)(2) IF (Connection Type=1)(Leg Length4.5mm)(Welding Posture=O, H, V)THEN (Welding Method=FCAW-FILLET)2.4. 焊接設(shè)備的確定此模數(shù)按規(guī)則,根據(jù)有關(guān)焊接位置和焊接方法的信息選擇適當?shù)暮附釉O(shè)備。表格顯示焊接方法和焊接設(shè)備之間的關(guān)系。利用表格4列舉的情況,在確定焊接方法后,焊接設(shè)備被自動地選擇。2.5. 焊接材料的確定根據(jù)焊接位置、方法和設(shè)備的有關(guān)情況,此模數(shù)按規(guī)則確定最適當?shù)暮附硬牧稀Mǔ?、被用來作分組裝配作業(yè)的鋼材是低碳鋼和高強度鋼。低碳鋼是軋制鋼板,其抗拉強度小于50 kg f / mm2。高強度鋼是低碳合金鋼、其抗拉的強度大于50 kg f / mm2,屈服強度超過30 kg f / mm2。低碳鋼有四個等級:A, B, D,和E.高強度鋼有三個等級:AH, DH, 和 EH 9。下面是確定焊接材料的例子。(1) IF (Welding PostureD)(Welding MethodsFCAW FILLET)(Welding EquipmentLN-7 or LN-9)(Steel Grade(Mild Steel A,B,D,E) Hightensile-Steel AH,DH)THEN (Welding MaterialMX-200H)(2) IF (Welding Posture=D)(Welding Methods=SAW Bothside BUTT)(Welding Equipment=SW-41)(Steel Grade=Mild Steel A,B,D,E)THEN (Welding Material=L-8xs-707EF H-14XS705EF L-8XNSH52) 系統(tǒng)實現(xiàn)和討論為了證明和檢驗用作于分組裝配作業(yè)的自動焊接操作計劃系統(tǒng),位于原油運輸船上甲板一部分的部件被試驗。圖顯示樣本部件的結(jié)構(gòu),圖表示它的分級結(jié)構(gòu)。圖樣本最后的部件列出有雙機組部件,中間的部件、15小部件,和 169組合零件。用于單元組件裝配的最終焊道操作在圖中列出。利用在裝配車間實際部件的實現(xiàn)和專家實施,結(jié)果被證實。 結(jié)論由四模數(shù)組成(焊接位置、焊接方法、焊接設(shè)備、和焊接材料)的自動焊操作系統(tǒng)的研制是利用將靈敏元件當做專家系統(tǒng)工具來實現(xiàn)的。利用實際的部件和其在分段裝配車間的實現(xiàn)該系統(tǒng)被證實。感謝此研究科研經(jīng)費由hyundai重工業(yè)有限公司提供。參考文獻:1 H. Nakayama, Expert process planning system of CIM for shipbuilding, Proceedings of International Conference on Computer Applications in Shipbuilding, 1994, pp. 12.5512.66.2 Ship and Ocean Foundation, Research Report on Shipbuilding CIMS Pilot Model Development, Japan, 1991.3 H.B. Cary, Summary of computer programs for welding engineering, Welding Journal 70 (1) (1991) 4046.4 D.M. Barborak, D.W. Dickinson, R.B. Madigan, PC-based expert system and their applications to welding, Welding Journal 70 (1) (1991) 2938.5 J. Weber et al., Welding expert focus on the future, Welding Journal 69(7) (1990) 3746.6 K.K. Cho et al., An automatic process planning system for block assembly in shipbuilding, Annals of the CIRP 45 (1) (1996) 4144.7 J. Gustafsson, M. Heinakari, Experiences with CIM in shipbuilding, Welding Journal 70 (3) (1991) 2735.8 B.H. Amstead et al., Manufacturing Processes, 8th ed., Wiley, New York, 1987, pp. 156157.9 S. Kalpakjian, Manufacturing Engineering and Technology, 3rd, Addison-Wesley, Reading, MA, 1995, pp.862870.
收藏
鏈接地址:http://italysoccerbets.com/article/20261777.html