概率論與數(shù)理統(tǒng)計(jì)第3講

上傳人:san****019 文檔編號:20044324 上傳時間:2021-01-30 格式:PPT 頁數(shù):52 大?。?02.31KB
收藏 版權(quán)申訴 舉報(bào) 下載
概率論與數(shù)理統(tǒng)計(jì)第3講_第1頁
第1頁 / 共52頁
概率論與數(shù)理統(tǒng)計(jì)第3講_第2頁
第2頁 / 共52頁
概率論與數(shù)理統(tǒng)計(jì)第3講_第3頁
第3頁 / 共52頁

下載文檔到電腦,查找使用更方便

14.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《概率論與數(shù)理統(tǒng)計(jì)第3講》由會員分享,可在線閱讀,更多相關(guān)《概率論與數(shù)理統(tǒng)計(jì)第3講(52頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、概率論與數(shù)理統(tǒng)計(jì) 第 3講 本文件可從網(wǎng)址 http:/ 上下載 (單擊 ppt講義后選擇概率論講義 子 目錄 ) 概率 每一個事件都有它的發(fā)生概率 即給定事件 A, 存在著一個正數(shù) P 與之對應(yīng) , 稱 之為事件 A的概率 , 記作 P(A)或 PA. 最高的發(fā)生概率為 1, 表示必然發(fā)生 . 最低的概率為 0, 表示不可能發(fā)生 . 而一般的隨機(jī)事件的概率介于 0與 1之間 . 這里只是概率的數(shù)學(xué)上的規(guī)定 , 其實(shí)就是任何 一個事件到實(shí)數(shù)軸上的 0,1區(qū)間的映射 . 但怎樣獲得切合實(shí)際的一個事件的概率呢 ? 概率的統(tǒng)計(jì)定義 在 n次重復(fù)試驗(yàn)中 , 如果事件 A發(fā)生了 m次 , 則 m/n稱為

2、事件 A發(fā)生的 頻率 . 同樣若事件 B發(fā) 生了 k次 , 則事件 B發(fā)生的頻率為 k/n. 概率的統(tǒng)計(jì)定義 如果 A是必然事件 , 有 m=n, 即必然事件的頻率 是 1, 當(dāng)然不可能事件的頻率為 0. 概率的統(tǒng)計(jì)定義 如果 A與 B互不相容 , 則事件 A+B的頻率為 (m+k)/n, 它恰好等于兩個事件的頻率的和 m/n+k/n, 這稱之為頻率的可加性 . 定義 在不變的條件下 , 重復(fù)進(jìn)行 n次試驗(yàn) , 事件 A發(fā) 生的頻率穩(wěn)定地某一常數(shù) p附近擺動 , 且一 般說來 , n越大 , 擺動幅度越小 , 則稱常數(shù) p為 事件 A的概率 , 記作 P(A). 但這不是概率的數(shù)學(xué)上的定義 ,

3、 而只是描述了 一個大數(shù)定律 . 歷史上的擲硬幣試驗(yàn) 試驗(yàn)者 拋擲次數(shù) n 正面出現(xiàn)次 數(shù) m 正面出現(xiàn)頻 率 m/n 德 .摩爾根 2048 1061 0.518 蒲豐 4040 2048 0.5069 皮爾遜 12000 6019 0.5016 皮爾遜 24000 12012 0.5005 維尼 30000 14994 0.4998 概率的穩(wěn)定性是概率的經(jīng)驗(yàn)基礎(chǔ) 但并不是說概率決定于經(jīng)驗(yàn) . 一個事件發(fā)生的 概率完全決定于事件本身的結(jié)構(gòu) , 指試驗(yàn)條 件 , 是先于試驗(yàn)而客觀存在的 . 概率的統(tǒng)計(jì)定義僅僅指出了事件的概率是客 觀存在的 , 但并不能用這個定義計(jì)算 P(A). 實(shí)際上 , 人

4、們是采取一次大量試驗(yàn)的頻率或 一系列頻率的平均值作為 P(A)的近似值的 . 例如 ,對一個婦產(chǎn)醫(yī)院 6年出生嬰兒的調(diào)查中 , 可以看到生男孩的頻率是穩(wěn)定的 , 約為 0.515 新生兒性別統(tǒng)計(jì)表 出生年份 新生兒總數(shù) n 新生兒分類數(shù) 頻率 (%) 男孩數(shù) m1 女孩數(shù) m2 男孩 女孩 1977 3670 1883 1787 51.31 48.69 1978 4250 2177 2073 51.22 48.78 1979 4055 2138 1917 52.73 47.27 1980 5844 2955 2889 50.56 49.44 1981 6344 3271 3073 51.56

5、48.44 1982 7231 3722 3509 51.47 48.53 6年總計(jì) 31394 16146 15248 51.48 48.52 概率的古典定義 (概率的古典概型 ) 有一類試驗(yàn)的特點(diǎn)是 : 1,每次試驗(yàn)只有有限種可能的試驗(yàn)結(jié)果 2,每次試驗(yàn)中 ,各基本事件出現(xiàn)的可能性完全 相同 . 在古典概型的試驗(yàn)中 , 如果總共有 n個可能的 試驗(yàn)結(jié)果 , 因此每個基本事件發(fā)生的概率為 1/n, 如果事件 A包含有 m個基本事件 , 則事件 A發(fā)生的概率則為 m/n. 定義 若試驗(yàn)結(jié)果一共由 n個基本事件 E1,E2, En組 成 , 并且這些事件的出現(xiàn)具有相同的可能性 , 而事件 A由其

6、中某 m個基本事件 E1,E2, Em組 成 , 則事件 A的概率可以用下式計(jì)算 : n mAAP 試驗(yàn)的基本事件總數(shù) 的基本事件數(shù)有利于)( 簡單的例 擲一枚硬幣的試驗(yàn) , 基本事件為正面和反面 , 而且由于硬幣的對稱性 , 因此出現(xiàn)正面和反 面的概率一樣 , 都是 1/2. 擲一次骰子的試驗(yàn) , 基本事件有 6個 , 因此每個 基本事件的概率為 1/6, 則 P奇數(shù)點(diǎn) =3/6=1/2, P小于 3=P1,2=2/6=1/3 例 袋內(nèi)裝有 5個白球 , 3個黑球 , 從中任 兩個球 , 計(jì)算取出的兩個球都是白球的概率 . 2 53 2 5 :, , , nC AA mC 解 組 成 試 驗(yàn)

7、 的 基 本 事 件 總 數(shù) 假 設(shè) 事 件 取 到 兩 個 白 球 則 的 基 本 事 件 數(shù) 則 2 5 2 8 5 4 1 2 () 1 2 8 7 5 0 .3 5 7 14 Cm PA nC 例 2 一批產(chǎn)品共 200個 , 廢品有 6個 , 求 (1)這批 產(chǎn)品的廢品率 ; (2)任取 3個恰有一個是廢品 的概率 ;(3)任取 3個全非廢品的概率 解 設(shè) P(A), P(A1), P(A0)分別表示 (1),(2),(3)中所 求的概率 ,則 9122.0 198199200 321 321 192193194 )()3( 0855.0 198199200 321 21 19319

8、4 6)()2( 03.0 200 6 )()1( 3 200 3 194 0 3 200 2 194 1 6 1 C C AP C CC AP AP 例 3 兩封信隨機(jī)地向標(biāo)號為 1,2,3,4的 4個郵筒 投寄 ,求第二個郵筒恰好被投入 1封信的概率 及前兩個郵筒中各有一封信的概率 . 解 設(shè)事件 A=第二個郵筒恰有一封信 事件 B=前兩個郵筒中各有一封信 兩封信投入 4個郵筒共有 44種投法 , 而組成事 件 A的投法有 23種 , 組成事件 B的投法則只有 2種 , 因此 8 1 16 2 )(, 8 3 16 6 )( BPAP 例 3 兩封信隨機(jī)地向標(biāo)號為 1,2,3,4的 4個郵

9、筒 投寄 ,求第二個郵筒恰好被投入 1封信的概率 及前兩個郵筒中各有一封信的概率 . 解 設(shè)事件 A=第二個郵筒恰有一封信 事件 B=前兩個郵筒中各有一封信 兩封信投入 4個郵筒共有 44種投法 , 而組成事 件 A的投法有 23種 , 組成事件 B的投法則只有 2種 , 因此 8 1 16 2 )(, 8 3 16 6 )( BPAP 比較難的例子: 一個小型電影院出售電影票 , 每張 5元 . 總共有 10個觀眾隨機(jī)地排成一隊(duì)買票 , 其中有 5人手 持一張 5元的鈔票 , 另 5人手持 10元一張的鈔 票 . 售票開始時 , 售票員手里沒有零鈔 , 求售票 能夠進(jìn)行的概率 (即不因?yàn)槿鄙?/p>

10、零錢找不開而 需要等的概率 ). 售票能進(jìn)行的例 : 售票不能進(jìn)行的例 : 持五元 持十元 基本事件總數(shù) n的計(jì)算 : 考慮將 5個手持五元的人隨機(jī)地放入 10個排隊(duì) 位置中的 5個 , 則剩下的 5個位置當(dāng)然是手持十 元的人的位置 . 即 10個位置中拿出 5個來放手 持五元的人的總數(shù) n. !5!5 !105 10 Cn !5!5 !105 10 Cn 將問題改變一下 , 假設(shè)售票員手里還是有足夠 的零鈔找換的 , 因此 售票能進(jìn)行 的事件就等 于售票員始終沒有使用自己手中的零鈔的事 件 , 而 售票不能進(jìn)行 的事件就是售票員要動 用自己手中的零鈔的事件 . 假設(shè)在售票開始時 , 售票員手

11、中的五元零鈔數(shù) 目為 0, 在售票過程中 , 遇到手持五元鈔的觀眾 則零鈔數(shù)目增 1, 否則零鈔數(shù)目減 1, 如果必須 動用售票員手中原有的零鈔時 , 零鈔數(shù)目可能 變?yōu)樨?fù)值 . 將售票過程中的零鈔數(shù)目的變化繪 成折線圖 . 售票能進(jìn)行的例子 : 0 1 2 3 4 -1 -2 -3 -4 售票不能進(jìn)行的例子 : 0 1 2 3 4 -1 -2 -3 -4 將曲線從第一個不能進(jìn)行的點(diǎn)處開始對折 0 1 2 3 4 -1 -2 -3 -4 對于售票不能進(jìn)行的例子 , 在遇到第一個手持 10元卻必須給他找自己的零鈔的人時 , 將后面 的人的手中鈔票都換一下 , 5元的換 10元 , 10元 的換

12、5元 , 這樣總的效果就是有 6人持 10元鈔 , 4 人持 5元鈔 , 在售完票時零鈔總損失必然是 2個 5元鈔 . 反過來 , 如果一開始就是有 6人持 10元 4人持 5 元 , 則售票必然不能進(jìn)行 , 因此必然存在第一 個無法找零鈔的人 , 如果這時將其后面的人 10 元換 5元 , 5元換 10元 , 則對應(yīng)于一個 5人持 10元 5人持 5元且售票不能進(jìn)行的事件 . 因此 , 6人持 10元 4人持 5元 的排隊(duì)事件總數(shù) , 和 5人持 10元 5人持 5元售票不能進(jìn)行 的事件總數(shù) 應(yīng)當(dāng)是一樣的 . 我們只需計(jì)算前者的事件總數(shù) , 而這等于先將 10個排隊(duì)位置中拿出 4個放持 5

13、元的人的總數(shù) . !6!4 !104 10 Cn B 因此 , 假設(shè)事件 A為售票能進(jìn)行 , 事件 B為售票 不能進(jìn)行 , 有利于 A的基本事件數(shù)為 nA, 有利 于 B的基本事件數(shù)為 nB, 則 6 1 6 5 1 !6!4 !10 !10 !5!5 1 11)( 5 10 4 10 C C n n n nn AP BB 這還可以擴(kuò)展到更一般的情況 , 即假設(shè)共有 2k 個人排隊(duì)買票 , 其中 k個人持五元鈔 , k個人持 十元鈔 , 每張票五元 , 售票開始時售票員沒有 零鈔 , 求售票能夠進(jìn)行的概率 . 假設(shè)所求事件的概率為 P(A), 售票不能進(jìn)行的 概率為 P(B), 則 B的事件總

14、數(shù)為 2k個排隊(duì)位置 中取出 k1個位置的事件數(shù) . 1 1 1 1 )!2( ! )!1()!1( )!2( 1 11)( 2 1 2 kk k k kk kk k C C n n n nn n n AP k k k kBBA 幾何概型 設(shè)樣本空間 S是平面上的某個區(qū)域 , 它的面積 記為 m(S); S A 向區(qū)域 S上隨機(jī)投擲一點(diǎn) , 該點(diǎn)落入任何部分 區(qū)域 A的可能性只與區(qū)域 A的面積 m(A)成比例 . S A 則必然有 () () () A PA S m m (3.2) 如樣本空間 S為一線段或一空間立體 , 則 向 S投點(diǎn)的相應(yīng)概率仍可用上式確定 , 但 m() 應(yīng)理解為長度或體

15、積 . 例 某人一覺醒來 , 發(fā)覺表停了 , 他打開收音 機(jī) , 想聽電臺報(bào)時 , 設(shè)電臺每正點(diǎn)報(bào)時一次 , 求他 (她 )等待時間短于 10分鐘的概率 . 解 以分鐘為單位 , 記上一次報(bào)時時刻為 0, 則 下一次報(bào)時時刻為 60, 于是這個人打開收音 機(jī)的時間必在 (0,60), 記”等待時間短于 10分 鐘”為事件 A, 則有 S=(0,60), A=(50,60)S, 于是 10 1 () 60 6 PA 例 甲 ,乙兩人相約在 0到 T這段時間內(nèi) , 在 預(yù)定地點(diǎn)會面 . 先到的人等候另一個人 , 經(jīng)過時間 t(tT)后離去 . 設(shè)每人在 0到 T這 段時間內(nèi)各時刻到達(dá)該地是等可能的

16、 , 且兩人到達(dá)的時刻互不牽連 . 求甲 ,乙兩 人能會面的概率 . 解 以 x,y分別表示甲乙兩人到達(dá)的時刻 , 那末 0 xT, 0yT. 若以 x,y表示平面上點(diǎn)的坐標(biāo) , 則所有基 本事件可以用一正方形內(nèi)所有點(diǎn)表示 , 兩人能會面的條件是 |xy|t y O t T x t T A y O t T x t T A 所以所求概率為 O t T x t T A 2 2 22 11 )( T t T tTT p 正方形面積 陰影部分面積 2 2 22 11 )( T t T tTT p 正方形面積 陰影部分面積 介紹蒙特卡洛試驗(yàn)技術(shù) 我們知道象擲硬幣這樣的試驗(yàn)作一次是很費(fèi) 時間的 . 但是計(jì)

17、算機(jī)出現(xiàn)以后 , 通常都有一 個隨機(jī)函數(shù) , 此隨機(jī)函數(shù)每次調(diào)用的返回值 都不一樣 , 會產(chǎn)生一個隨機(jī)的數(shù)字 , 因此我 們就可以利用這樣一個隨機(jī)的數(shù)字進(jìn)行反 復(fù)的試驗(yàn)來求出我們所希望的事件的概率 . 特別是有一些事件的概率求起來非常困難 , 但用計(jì)算機(jī)進(jìn)行仿真試驗(yàn) , 就可以通過統(tǒng)計(jì) 的辦法求出概率的近似值 , 這叫做蒙特卡洛 試驗(yàn) . 在 word上編程試驗(yàn)擲硬幣 Word字處理器帶有一個 virsal basic編譯器 , word的宏都是用它來編寫的 . 在進(jìn)入 word之 后 , 選擇 工具 |宏 |宏菜單 , 在宏名上鍵入你 想要的宏的名字 , 這里我們鍵入 test, 然后單 擊

18、 創(chuàng)建 按鈕 , 這就進(jìn)入 virsal basic編譯器 . Basic語言中有一個函數(shù)叫 rnd(), 每調(diào)用一次 它就會返回一個在區(qū)間 0,1)內(nèi)的隨機(jī)數(shù) , 因 此可以在調(diào)用此函數(shù)后判定返回值是否小 于 0.5, 如果小于就是反面 , 否則就是正面 , 這樣可以保證正面和反面的機(jī)會都是 0.5. 因此鍵入這樣的語句 If rnd()0.5 then selection.typetext text:=反面 Else selection.typetext text:=正面 End if 則每調(diào)用一次這個宏就相當(dāng)于用計(jì)算機(jī)模擬 作了一次擲硬幣試驗(yàn) 如果要連做 10次試驗(yàn) , 則語句改成這樣

19、For i=1 to 10 If rnd()0.5 then selection.typetext text:=反面 Else selection.typetext text:=正面 End if Next i 如果要統(tǒng)計(jì)做 n次試驗(yàn)中正面出現(xiàn)的頻率程序?yàn)?Sub test() n = 200000 m = 0 For i = 1 To n If Rnd() 0.5 Then m = m + 1 End If Next Selection.TypeText Text:=Str(m / n) End Sub 作業(yè) 第 3頁 習(xí)題 1-2 第 1題 第 4頁開始 習(xí)題 1-3 第 1,2,4,8,10題 學(xué)號小于 2003021561的學(xué)生交作業(yè) 作業(yè)盡量用紙交 , 盡量不用本子 .

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!