《概率論與數(shù)理統(tǒng)計》習題三答案.doc

上傳人:小** 文檔編號:16660567 上傳時間:2020-10-20 格式:DOC 頁數(shù):16 大?。?98.90KB
收藏 版權(quán)申訴 舉報 下載
《概率論與數(shù)理統(tǒng)計》習題三答案.doc_第1頁
第1頁 / 共16頁
《概率論與數(shù)理統(tǒng)計》習題三答案.doc_第2頁
第2頁 / 共16頁
《概率論與數(shù)理統(tǒng)計》習題三答案.doc_第3頁
第3頁 / 共16頁

下載文檔到電腦,查找使用更方便

5 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《《概率論與數(shù)理統(tǒng)計》習題三答案.doc》由會員分享,可在線閱讀,更多相關(guān)《《概率論與數(shù)理統(tǒng)計》習題三答案.doc(16頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、概率論與數(shù)理統(tǒng)計習題及答案習題三1.將一硬幣拋擲三次,以X表示在三次中出現(xiàn)正面的次數(shù),以Y表示三次中出現(xiàn)正面次數(shù)與出現(xiàn)反面次數(shù)之差的絕對值.試寫出X和Y的聯(lián)合分布律.【解】X和Y的聯(lián)合分布律如表:XY01231003002.盒子里裝有3只黑球、2只紅球、2只白球,在其中任取4只球,以X表示取到黑球的只數(shù),以Y表示取到紅球的只數(shù).求X和Y的聯(lián)合分布律.【解】X和Y的聯(lián)合分布律如表:XY0123000102P(0黑,2紅,2白)=03.設(shè)二維隨機變量(X,Y)的聯(lián)合分布函數(shù)為F(x,y)=求二維隨機變量(X,Y)在長方形域內(nèi)的概率.【解】如圖 題3圖說明:也可先求出密度函數(shù),再求概率。4.設(shè)隨機變

2、量(X,Y)的分布密度f(x,y)=求:(1) 常數(shù)A;(2) 隨機變量(X,Y)的分布函數(shù);(3) P0X1,0Y2.【解】(1) 由得 A=12(2) 由定義,有 (3) 5.設(shè)隨機變量(X,Y)的概率密度為f(x,y)=(1) 確定常數(shù)k;(2) 求PX1,Y3;(3) 求PX1.5;(4) 求PX+Y4.【解】(1) 由性質(zhì)有故 (2) (3) (4) 題5圖6.設(shè)X和Y是兩個相互獨立的隨機變量,X在(0,0.2)上服從均勻分布,Y的密度函數(shù)為fY(y)=求:(1) X與Y的聯(lián)合分布密度;(2) PYX.題6圖【解】(1) 因X在(0,0.2)上服從均勻分布,所以X的密度函數(shù)為而所以

3、(2) 7.設(shè)二維隨機變量(X,Y)的聯(lián)合分布函數(shù)為F(x,y)=求(X,Y)的聯(lián)合分布密度.【解】8.設(shè)二維隨機變量(X,Y)的概率密度為f(x,y)=求邊緣概率密度.【解】 題8圖 題9圖9.設(shè)二維隨機變量(X,Y)的概率密度為f(x,y)=求邊緣概率密度.【解】 題10圖10.設(shè)二維隨機變量(X,Y)的概率密度為f(x,y)=(1) 試確定常數(shù)c;(2) 求邊緣概率密度.【解】(1) 得.(2) 11.設(shè)隨機變量(X,Y)的概率密度為f(x,y)=求條件概率密度fYX(yx),fXY(xy). 題11圖【解】 所以 12.袋中有五個號碼1,2,3,4,5,從中任取三個,記這三個號碼中最小

4、的號碼為X,最大的號碼為Y.(1) 求X與Y的聯(lián)合概率分布;(2) X與Y是否相互獨立?【解】(1) X與Y的聯(lián)合分布律如下表YX345120300(2) 因故X與Y不獨立13.設(shè)二維隨機變量(X,Y)的聯(lián)合分布律為XY2 5 80.40.80.15 0.30 0.350.05 0.12 0.03(1)求關(guān)于X和關(guān)于Y的邊緣分布;(2) X與Y是否相互獨立?【解】(1)X和Y的邊緣分布如下表XY258PY=yi0.40.150.300.350.80.80.050.120.030.20.20.420.38(2) 因故X與Y不獨立.14.設(shè)X和Y是兩個相互獨立的隨機變量,X在(0,1)上服從均勻分

5、布,Y的概率密度為fY(y)=(1)求X和Y的聯(lián)合概率密度;(2) 設(shè)含有a的二次方程為a2+2Xa+Y=0,試求a有實根的概率.【解】(1) 因 故 題14圖(2) 方程有實根的條件是故 X2Y,從而方程有實根的概率為: 15.設(shè)X和Y分別表示兩個不同電子器件的壽命(以小時計),并設(shè)X和Y相互獨立,且服從同一分布,其概率密度為f(x)=求Z=X/Y的概率密度.【解】如圖,Z的分布函數(shù)(1) 當z0時,(2) 當0z0)的泊松分布,每位乘客在中途下車的概率為p(0p1),且中途下車與否相互獨立,以Y表示在中途下車的人數(shù),求:(1)在發(fā)車時有n個乘客的條件下,中途有m人下車的概率;(2)二維隨機

6、變量(X,Y)的概率分布.【解】(1) .(2) 24.設(shè)隨機變量X和Y獨立,其中X的概率分布為X,而Y的概率密度為f(y),求隨機變量U=X+Y的概率密度g(u). 【解】設(shè)F(y)是Y的分布函數(shù),則由全概率公式,知U=X+Y的分布函數(shù)為 由于X和Y獨立,可見 由此,得U的概率密度為 25. 25. 設(shè)隨機變量X與Y相互獨立,且均服從區(qū)間0,3上的均勻分布,求PmaxX,Y1.解:因為隨即變量服從0,3上的均勻分布,于是有 因為X,Y相互獨立,所以推得 .26. 設(shè)二維隨機變量(X,Y)的概率分布為XY -1 0 1 -101a 0 0.20.1 b 0.20 0.1 c其中a,b,c為常數(shù),且X的數(shù)學期望E(X)= -0.2,PY0|X0=0.5,記Z=X+Y.求:(1) a,b,c的值;(2) Z的概率分布;(3) PX=Z. 解 (1) 由概率分布的性質(zhì)知,a+b+c+0.6=1 即 a+b+c = 0.4.由,可得.再由 ,得 .解以上關(guān)于a,b,c的三個方程得.(2) Z的可能取值為-2,-1,0,1,2,即Z的概率分布為Z-2 -1 0 1 2P0.2 0.1 0.3 0.3 0.1(3) .16

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!