《(江蘇專用)2020版高考數(shù)學(xué)一輪復(fù)習(xí) 加練半小時(shí) 專題6 數(shù)列 第46練 數(shù)列求和 文(含解析)》由會(huì)員分享,可在線閱讀,更多相關(guān)《(江蘇專用)2020版高考數(shù)學(xué)一輪復(fù)習(xí) 加練半小時(shí) 專題6 數(shù)列 第46練 數(shù)列求和 文(含解析)(7頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、第46練 數(shù)列求和基礎(chǔ)保分練1.數(shù)列1,2,3,4,前n項(xiàng)和為_.2.數(shù)列an中,an(1)nn,則a1a2a10_.3.已知數(shù)列an的通項(xiàng)公式是an,其前n項(xiàng)和Sn,則項(xiàng)數(shù)n_.4.數(shù)列an滿足:a11,a21,a32,an2an1an(nN*),則數(shù)列an的前2019項(xiàng)的和為_.5.數(shù)列an的前n項(xiàng)和為Sn,若an,則S5_.6.已知數(shù)列an中,a11,a2,a3,a4,an,則數(shù)列an的前n項(xiàng)和Sn_.7.已知正數(shù)數(shù)列an是公比不等于1的等比數(shù)列,且lga1lga20190,若f(x),則f(a1)f(a2)f(a2019)_.8.在有窮數(shù)列an中,Sn為an的前n項(xiàng)和,若把稱為數(shù)列an
2、的“優(yōu)化和”,現(xiàn)有一個(gè)共2017項(xiàng)的數(shù)列an:a1,a2,a2017,若其“優(yōu)化和”為2018,則有2018項(xiàng)的數(shù)列:1,a1,a2,a2017的“優(yōu)化和”為_.9.數(shù)列an的通項(xiàng)公式是an(1)n(3n1),則該數(shù)列的前80項(xiàng)之和為_.10.已知數(shù)列an中,a11,a36,且anan1n(n2).則數(shù)列的前n項(xiàng)和為_.能力提升練1.已知數(shù)列an中第15項(xiàng)a15256,數(shù)列bn滿足log2b1log2b2log2b147,且an1anbn,則a1_.2.已知函數(shù)f(n)n2sin,且anf(n),則a1a2a3a200_.3.已知數(shù)列an滿足a11,nan1(n1)ann(n1),且bnanc
3、os,記Sn為數(shù)列bn的前n項(xiàng)和,則S24_.4.已知數(shù)列an,定義數(shù)列an12an為數(shù)列an的“2倍差數(shù)列”,若an的“2倍差數(shù)列”的通項(xiàng)公式為an12an2n1,且a12,若數(shù)列an的前n項(xiàng)和為Sn,則S33_.5.數(shù)列an滿足a11,且對(duì)任意的m,nN*都有amnamanmn,則等于_.6.設(shè)f(x),根據(jù)課本中推導(dǎo)等差數(shù)列前n項(xiàng)和的方法可以求得f(1)f(2)f(59)的值是_.答案精析基礎(chǔ)保分練1.12.53.64.25.6.7.2019解析正數(shù)數(shù)列an是公比不等于1的等比數(shù)列,且lga1lga20190,lg(a1a2019)0,即a1a20191.函數(shù)f(x),f(x)f2,令T
4、f(a1)f(a2)f(a2019),則Tf(a2019)f(a2018)f(a1),2Tf(a1)f(a2019)f(a2)f(a2018)f(a2019)f(a1)22019,T2019.8.2018解析因?yàn)閍1,a2,a2017的“優(yōu)化和”為,故2018,也就是2017a12016a22015a3a201720172018.又1,a1,a2,a2017的“優(yōu)化和”為2018.9.12010.解析由題意,可得a2a1212,a3a23156,解得1,則anan1n,n2,可得a2a12,a3a23,anan1n,累加得ana123n,an123n,n1時(shí),a11,滿足上式.則2,則數(shù)列的前
5、n項(xiàng)和為Tn22.能力提升練1.22.20100解析anf(n),當(dāng)n為偶數(shù)時(shí),f(n)n2sinn2,當(dāng)n為奇數(shù)時(shí),f(n)n2sinn2,故a1a2a3a200122324219922002(21)(12)(200199)(200199)12319920020100.3.304解析nan1(n1)ann(n1),1,數(shù)列是公差與首項(xiàng)都為1的等差數(shù)列,1(n1)1,可得ann2.bnancos,bnn2cos,令n3k2,kN*,則b3k2(3k2)2cos(3k2)2,kN*,同理可得b3k1(3k1)2,kN*,b3k(3k)2,kN*.b3k2b3k1b3k(3k2)2(3k1)2(3
6、k)29k,kN*,則S249(128)8304.4.2392解析根據(jù)題意得an12an2n1,a12,1,數(shù)列表示首項(xiàng)為1,公差為1的等差數(shù)列,1(n1)n,ann2n,Sn121222323n2n,2Sn122223324n2n1,Sn22223242nn2n1n2n122n1n2n1,2(1n)2n1,Sn(n1)2n12,S33(331)233122392.5.解析對(duì)任意的m,nN*,都有amnamanmn,且a11,令m1代入得,an1a1ann,則an1ann1,a2a12,a3a23,anan1n(n2),以上n1個(gè)式子相加可得,ana1234n,則ana1(n1)(n2)n(n1),n1時(shí),適合此式,2,22.6.解析令Sf(1)f(2)f(59),則S可得2S,2S59,S.7