立體倉儲系統(tǒng)穿梭車蝸輪蝸桿舉升系統(tǒng)設計【三維PROE】【5張CAD圖紙及說明書全套】【YC系列】
【溫馨提示】====設計包含CAD圖紙 和 DOC文檔,均可以在線預覽,所見即所得,,dwg后綴的文件為CAD圖,超高清,可編輯,無任何水印,,充值下載得到【資源目錄】里展示的所有文件======課題帶三維,則表示文件里包含三維源文件,由于三維組成零件數(shù)量較多,為保證預覽的簡潔性,店家將三維文件夾進行了打包。三維預覽圖,均為店主電腦打開軟件進行截圖的,保證能夠打開,下載后解壓即可。======詳情可咨詢QQ:1304139763
本科生畢業(yè)設計(論文)
題 目:
立體倉儲系統(tǒng)穿梭車
蝸輪蝸桿舉升系統(tǒng)設計
英文題目:
系 :
專 業(yè):
班 級:
學 生:
學 號:
指導教師1:
職稱:
指導教師2:
職稱:
-1-
聲 明
本人鄭重聲明:所呈交的論文是本人在指導教師的指導下進行的研究工作及取得研究結果。論文在引用他人已經(jīng)發(fā)表或撰寫的研究成果時,已經(jīng)作了明確的標識;除此之外,論文中不包括其他人已經(jīng)發(fā)表或撰寫的研究成果,均為獨立完成。其它同志對本文所做的任何貢獻均已在論文中做了明確的說明并表達了謝意。
學生簽名:_____________ 年 月 日
導師1簽名:___________ 年 月 日
導師2簽名:___________ 年 月 日
立體倉儲系統(tǒng)穿梭車蝸輪蝸桿舉升系統(tǒng)設計
摘 要
自動化立體倉庫具有占地小、容量大、周轉(zhuǎn)率強、準確率高、自動化程度高、環(huán)境適應能力強等特點,在機械、冶金、煙草、電子、醫(yī)藥等行業(yè)得到廣泛應用,成為現(xiàn)代物流業(yè)倉儲與配送不可缺少的重要組成部分。此情況下,需要一種穿梭車。
本次論文是針對穿梭車蝸輪蝸桿舉升系統(tǒng)進行設計;首先,對立體倉儲穿梭車結構及現(xiàn)狀進行了調(diào)查分析;接著,在上述分析的基礎上提出了本次設計的穿梭車蝸輪蝸桿舉升機構構的總體方案,即由直流電機驅(qū)動蝸輪蝸桿減速器,蝸輪輸出軸端部連接傳動螺母,把蝸輪的旋轉(zhuǎn)運動轉(zhuǎn)換為直線運動;然后,對各機構中主要零部件進行了設計與校核,包括電機的選定、蝸輪蝸桿、軸及軸上零件的設計校核;最后,采用AutoCAD制圖軟件繪制了本系統(tǒng)的裝配圖及主要零件圖,并采用Pro/E三維設計軟件進行三維造型設計。
關鍵詞:穿梭車,蝸輪蝸桿,舉升,設計
-51-
Design of the lifting system of the worm and worm gear of the shuttle vehicle in the three-dimensional storage system
Abstract
Automated warehouse is covers an area of small, large capacity, turnover rate, accuracy rate high, high degree of automation, environmental adaptation ability and other characteristics, in machinery, metallurgy, tobacco, electronics, pharmaceutical and other industries get widely used, has become an important part of modern logistics warehousing and distribution can not be missing. In this case, a shuttle is required.
This paper is aimed at the shuttle worm lifting system is designed; first, to warehouse shuttle structure and the analysis of the current situation; then, based on the above analysis, put forward the overall scheme of the design of the shuttle car worm lifting mechanism, which is composed of a DC motor driven worm reducer, turbine the end of the output shaft is connected with the transmission nut, convert the turbine rotation into linear motion; then, the main parts of the body in the design and verification, including motor selection, worm, shaft and shaft parts design; finally, draw the assembly drawing of the system and the main parts of the map by AutoCAD mapping software, and 3D modeling using Pro/E 3D design software.
Key words: shuttle, worm, lifting, design
目 錄
摘 要 1
Abstract 2
1 緒 論 5
1.1研究背景及意義 5
1.2 穿梭車概述 6
1.3國內(nèi)外研究現(xiàn)狀 9
2 總體方案設計 12
2.1設計要求 12
2.1.1內(nèi)容要求 12
2.1.2參數(shù)要求 12
2.2方案設計 12
2.3方案確定與原理分析 13
3主要零部件的設計 14
3.1舉升電機的選擇 14
3.1.1電機類型介紹 14
3.1.2選擇電動機類型 15
3.1.3 電動機功率的選擇 16
3.1.4 電動機轉(zhuǎn)速的選擇 17
3.2傳動參數(shù)計算 17
3.2.1傳動比的計算 17
3.2.2各軸的轉(zhuǎn)速 17
3.2.3各軸的輸入功率 17
3.2.4各軸的輸入轉(zhuǎn)矩 17
3.3蝸輪蝸桿設計 18
3.3.1選擇蝸輪蝸桿的傳動類型 18
3.3.2選擇材料 18
3.3.3按計齒面接觸疲勞強度計算進行設 19
3.3.4蝸桿與蝸輪的主要參數(shù)與幾何尺寸 20
3.3.5校核齒根彎曲疲勞強度 21
3.3.6驗算效率 21
3.3.7精度等級公差和表面粗糙度的確定 22
3.3.8蝸桿傳動的熱平衡計算 22
3.4軸的設計與校核 22
3.4.1輸入軸 22
3.4.2輸出軸 25
3.5減速器箱體設計 28
3.5.1箱體結構設計 28
3.5.2油面位置及箱座高度的確定 28
3.5.3箱體結構的工藝性 28
3.5.5箱體尺寸設計 29
4 標準件的選用與校核 31
4.1軸承的選用與校核 31
4.2鍵的選用與校核 32
4.3聯(lián)軸器的選用 33
4.4潤滑與密封 33
4.5連接螺栓的選用與校核 34
5 基于Pro/E的三維設計 37
5.1 Pro/E軟件概述 37
5.2三維模型設計 39
5.2.1箱體 39
5.2.2舉升取物平臺 39
5.2.3蝸輪蝸桿 40
5.2.4車體 40
5.3三維裝配設計 40
6 加工與制造工藝 42
6.1蝸桿加工與制造工藝 42
6.1.1蝸桿材料的選擇 42
6.1.2加工定位基面的選擇 42
6.1.3擬定工藝路線 44
6.1.4填寫工藝卡片 44
6.2蝸輪加工與制造工藝 45
6.2.1確定毛坯 45
6.2.2選擇定位基準 45
6.2.3制定工藝路線 46
結 論 47
參 考 文 獻 48
在 學 取 得 成 果 49
致 謝 50
1 緒 論
1.1研究背景及意義
物流自動化系統(tǒng)是現(xiàn)代物流系統(tǒng)的重要組成部分,是現(xiàn)代物流裝備、計算機及其網(wǎng)絡系統(tǒng)、信息識別和信息管理系統(tǒng)、智能控制系統(tǒng)的有機集成。它以信息化為基礎,以機電一體化為核心,其目的是擴大物流作業(yè)能力、提高勞動生產(chǎn)率、減少物流作業(yè)差錯、獲取更大利潤[10]。隨著全球經(jīng)濟的飛速發(fā)展,現(xiàn)代化生產(chǎn)觀念日益受到重視,企業(yè)對生產(chǎn)線運行、物流系統(tǒng)的柔性要求也越來越高。從產(chǎn)品的整個加工過程來看,物料真正處于加工的時間非常短,僅占整個生產(chǎn)周期的5%一10%,大部分時間都用于物料存儲、裝載、運輸和待加工狀態(tài),而存儲和運輸占總成本的95%[11]。因此,對于現(xiàn)代化企業(yè),降低產(chǎn)品成本的主要途徑之一就是要提高物流系統(tǒng)的性能、縮短非加工時間。作為倉儲業(yè)重要的存儲方式自動化立體倉庫的出現(xiàn),是倉儲物流業(yè)的一次技術革命。
自動化立體倉庫是物流系統(tǒng)中的一個重要部分,它是集物料搬運和倉儲科學為一體的一門綜合科學技術工程。自動化立體倉庫(AS/RS)作為現(xiàn)代物流系統(tǒng)中的主要組成部分,是一種多層次存放貨物的高架倉庫系統(tǒng),它一般是由貨架、輸送系統(tǒng)、堆垛機上位調(diào)度管理系統(tǒng)組成。
自動化立體倉庫與傳統(tǒng)倉庫“靜態(tài)存儲”的功能不同,它采用先進的自動化倉儲設備,不僅能使貨物在倉庫內(nèi)按需要自動存取,而且可以與倉庫以外的物流環(huán)節(jié)進行有機的連接,并通過管理系統(tǒng)和自動化倉儲設備使倉庫成為企業(yè)生產(chǎn)物流中的一個重要環(huán)節(jié)。企業(yè)采用控制技術先進的自動化立體倉庫可實現(xiàn)如下目的:
(1)科學存儲、提高物料調(diào)節(jié)水平;
(2)節(jié)省定量貨物入出庫時間,節(jié)省能源;
(3)有效銜接生產(chǎn)和銷售,加快物資周轉(zhuǎn),降低成本;
(4)方便、快捷顯示庫存信息,為企業(yè)生產(chǎn)決策提供依據(jù);
(5)有效應對突發(fā)事件;
(6)提高訂單的響應速度。
作為自動化立體倉庫的重要輸送系統(tǒng)——自動導引穿梭車(RGV-Rail Guided Vehicle,以下簡稱 RGV),在隨著工廠自動化(FA)計算機集成制造系統(tǒng)(CIMS)技術的逐步發(fā)展和柔性制造系統(tǒng)(FMS:F1exible Manufacture System)廣泛應用越來越受到重視并不斷的改進。穿梭車系統(tǒng)是聯(lián)系和調(diào)節(jié)離散型物流系統(tǒng),使其作業(yè)連續(xù)化的必要的自動化搬運裝卸手段,同時 RGVS 具有能滿足物料搬運作業(yè)的自動化、柔性(即可調(diào)整性)和準時的要求等特點,所以在我國某些汽車、煙草等行業(yè)得到越來越廣泛的應用[12]。但是,由于不同的立體庫對 RGV 的應用要求不同,由此需產(chǎn)生設計出多種不同結構的小車來滿足實際業(yè)務需要,同時由于產(chǎn)品的特性不同,要求與之相適應的設備,所以對不同立體庫設計出不同結構和不同功用的 RGV 對其控制方法的研究是很有必要的。
此外,先進的自動化立體倉庫的對于促進傳統(tǒng)觀念的轉(zhuǎn)變、提高現(xiàn)代化物流意識形成和新型的商品流通產(chǎn)業(yè)等方面均產(chǎn)生了強勁的推動作用。自動化立體倉庫的智能化管理在提高企業(yè)的競爭力和滿足客戶的服務方面己經(jīng)越來越成為一個重要的因素。自動化倉庫系統(tǒng)一般由管理層、監(jiān)控層、執(zhí)行層三部分組成,為了保證整個倉庫的性能指標最優(yōu),能夠更加有效的工作,就要對它的各個子系統(tǒng)進行調(diào)度,使其能夠協(xié)調(diào)運轉(zhuǎn)[12]。調(diào)度實際上是一類特殊的優(yōu)化問題,是對現(xiàn)有的作業(yè)任務進行排序、并對路徑選擇進行優(yōu)化的問題,通過優(yōu)化的手段來達到減少入出庫的時間和提高效率的目的。一個設計合理的、理念先進的系統(tǒng)對推廣和應用自動化立體倉庫技術具有重要的促進作用。自動化立體倉庫的調(diào)度優(yōu)化對提高出入庫效率、降低物流成本具有重要的現(xiàn)實意義。
由于自動化立體倉庫發(fā)展的過程中應用行業(yè)不同,導致倉庫類型的多樣化。同時同類型倉庫因為應用需求不同,也使得物流規(guī)劃的不同。應用表明針對不同產(chǎn)品的特性要求和設備功能特性需要設計出與之相適應的實用、高效和穩(wěn)定的控制方法和調(diào)度系統(tǒng)具有重要意義和實用價值。因此對自動化倉庫穿梭車設計優(yōu)化和調(diào)度算法的研究成為一個重要的課題。
1.2 穿梭車概述
穿梭車作為新型的智能的搬運設備,有著一套完整的電氣與機械系統(tǒng),對于單工位的穿梭車的主要組成部分包括:箱形車體、兩對行走車輪、24V 充電鐵離電池組、電氣控制箱、鏈條傳動機構、舉升杠桿運動機構、行走電機和舉升電機、傳感器以及防撞防滑裝置等。電氣控制箱內(nèi)配有 PLC 控制器及輸入輸出擴展模塊、電機驅(qū)動模塊、電源穩(wěn)壓模塊、無線發(fā)射接收模塊以及直流接觸器、繼電器、斷路器、保險絲等低壓電氣控制設備。并根據(jù)實際需要,穿梭車還可以配有條碼識別器,以太網(wǎng)的模塊與網(wǎng)橋、條碼掃描儀等。
穿梭車上的傳感器包括在軌檢測開關(只要小車在軌道中才能工作)前、后工位分別配有激光測距傳感器用來識別貨物距離以及實現(xiàn)準確、平穩(wěn)的定位;安全防撞光電傳感器用來識別巷道是否存在障礙物;托盤識別光電傳感器用來實現(xiàn)對托盤的尋找與計數(shù)等功能應用。圖 2.2 顯示了穿梭車上傳感器的安裝位置與結構布局[4]。
圖 1.3穿梭車結構示意圖
(1)車載控制系統(tǒng)
車載控制系統(tǒng)是穿梭車的核心部分,一般由計算機控制系統(tǒng)、導航系統(tǒng)、通訊系統(tǒng)、操作面板及電機驅(qū)動器構成.計算機控制系統(tǒng)可采用PLC、單片機及工控機等。導航系統(tǒng)根據(jù)導航方式不同可分為電磁導航、磁條導航、激光導航和慣性導航等不同形式.通過導航系統(tǒng)能使穿梭車確定其自身位置,并能沿正確的路徑行走。通訊系統(tǒng)是穿梭車和控制臺之間交換信息和命令的橋梁,由于無線電通訊具有不受障礙物阻擋的特點,一般在控制臺和穿梭車之間采用無線電通訊,而在穿梭車和移載設備之間為了定位精確采用光通訊.操作面板的功能主要是在穿梭車調(diào)試時輸入指令,并顯示有關信息,通過RS232接口和計算機相連接。穿梭車上的能源為蓄電池,所以穿梭車的動作執(zhí)行元件一般采用直流電動機、步進電動機和直流伺服電機等。
(2)車體系統(tǒng)
它包括底盤、車架、殼體和控制器、蓄電池安裝架等,是穿梭車的軀體,具有電動車輛的結構特征。
(3)行走系統(tǒng)
它一般由驅(qū)動輪、從動輪和轉(zhuǎn)向機構組成.形式有三輪、四輪、六輪及多輪等,三輪結構一般采用前輪轉(zhuǎn)向和驅(qū)動,四輪或六輪一般采用雙輪驅(qū)動、差速轉(zhuǎn)向或獨立轉(zhuǎn)向方式。
(4)移載系統(tǒng)
它是用來完成作業(yè)任務的執(zhí)行機構,在不同的任務和場地環(huán)境下,可以選用不同的移載系統(tǒng),常用的有滾道式、叉車式、機械手式等。
(5)安全與輔助系統(tǒng)
為了避免穿梭車在系統(tǒng)出故障或有人員經(jīng)過穿梭車工作路線時出現(xiàn)碰撞,穿梭車一般都帶有障礙物探測及避撞、警音、警視、緊急停止等裝置。另外,還有自動充電等輔助裝置。
(6)控制臺
控制臺可以采用普通的IBM-PC機,如條件惡劣時,也可采用工業(yè)控制計算機,控制臺通過計算機網(wǎng)絡接受主控計算機下達的穿梭車輸送任務,通過無線通訊系統(tǒng)實時采集各穿梭車的狀態(tài)信息。根據(jù)需求情況和當前各穿梭車運行情況,將調(diào)度命令傳遞給選定的穿梭車。穿梭車完成一次運輸任務后在待命站等待下次任務。如何高效地、快速地進行多任務和多穿梭車的調(diào)度,以及復雜地形的避碰等一系列問題都需要軟件來完成。由于整個系統(tǒng)中各種智能設備都有各自的屬性,因此用面向?qū)ο笤O計的C++語言來編程是一個很好的選擇。在編程時要注意的是穿梭車系統(tǒng)的實時性較強,為了加快控制臺和穿梭車之間的無線通訊以及在此基礎上的穿梭車調(diào)度,編程中最好采用多線程的模式,使通訊和調(diào)度等各功能模塊互不影響,加快系統(tǒng)速度。
(7)通訊系統(tǒng)
通訊系統(tǒng)一方面接受監(jiān)控系統(tǒng)的命令,及時、準確地傳送給其它各相應的子系統(tǒng),完成監(jiān)控系統(tǒng)所指定的動作:另一方面又接收各子系統(tǒng)的反饋信息,回送給監(jiān)控系統(tǒng),作為監(jiān)控系統(tǒng)協(xié)調(diào)、管理、控制的依據(jù)。
由于穿梭車位置不固定,且整個系統(tǒng)中設備較多,控制臺和穿梭車間的通訊最適宜用無線通訊的方式。控制臺和各穿梭車就組成了一點對多點的無線局域網(wǎng),在設計過程中要注意兩個問題:
①無線電的調(diào)制問題
無線電通訊中,信號調(diào)制可以用調(diào)幅和調(diào)頻兩種方式。在系統(tǒng)的工作環(huán)境中,電磁干擾較嚴重,調(diào)幅方式的信號頻率范圍大,易受干擾,而調(diào)頻信號頻率范圍很窄,很難受干擾,所以應優(yōu)先考慮調(diào)頻方式。而且調(diào)幅方式的波特率比較低,一般都小于3200Kbit/s,調(diào)頻的波特率可以達到9600K bit/s以上。
②通訊協(xié)議問題
在通訊中,通訊的協(xié)議是一個重要問題。協(xié)議的制定要遵從既簡潔又可靠的原則。簡潔有效的協(xié)議可以減少控制器處理信號的時間,提高系統(tǒng)運行速度。
(8)導航系統(tǒng)
穿梭車導航系統(tǒng)的功能是保證穿梭車小車沿正確路徑行走,并保證一定行走精度。穿梭車的制導方式按有無導引路線分為三種:一是有固定路線的方式:二是半固定路線的方式,包括標記跟蹤方式和磁力制導方式;三是無路線方式,包括地面幫助制導方式、用地圖上的路線指令制導方式和在地圖上搜索最短路徑制導方式。
1.3國內(nèi)外研究現(xiàn)狀
穿梭車是伴隨著自動化物流系統(tǒng)和自動化倉庫而產(chǎn)生的設備,穿梭車又稱為軌道式自動導引車 RGV,它可以按照監(jiān)控系統(tǒng)下達的指令和預先設計的程序,依照車載傳感器確定的位置信息,沿著固定的行駛路線和停靠位置自動駕駛,RGV 一般裝備有光學式自動導引裝置。能夠沿固定的導引軌道行駛,并具有小車編程與停車選擇裝置、安全保護以及移載功能的運輸小車。裝有激光測距傳感器,可以獨立尋址的無人駕駛自動運輸小車,是現(xiàn)代物流系統(tǒng)的重要設備。它是集光、電、計算機為一體的簡易機器人[6]。
RGV 根據(jù)功能的不同,可分為裝配型 RGV 系統(tǒng)和運輸型 RGV 系統(tǒng)兩大類型,主要用于物料輸送、車間裝配等;根據(jù)運動方式的不同,可分為環(huán)形軌道式和直線往復式。兩種類型的穿梭車都可多車同軌道工作。環(huán)形穿梭車一般采用鋁合金軌道,成本比較高,效率高;直線往復式通常采用鋼軌作為軌道,成本較低,可滿足中型倉庫使用要求。
我國在穿梭車應用方面走的是自主研發(fā)設計的道路。自主研發(fā)在實踐應用中較成功的案例有昆明船舶公司在 2001 年研發(fā)設計的雙軌直線型穿梭車,它的主要參數(shù):行走速度 (100~180)m/min,,加速度(0.3~0.5)m/2s ,輸送速度(12~15)m/min,行走定位精度±5mm [7]。接著在 2002 年設計出單軌環(huán)行穿梭車,這種穿梭車是單工位單軌環(huán)形的鋁合金軌道,在一定程度上提高了效率。后來根據(jù)需要在 2003 年設計出軌道式直線型雙工位穿梭車,這穿梭車是由車體、橫向輸送裝置、縱向輸送裝置、旋轉(zhuǎn)機構、舉升機構構、車體行走機構等組成,它的特點是有兩個工位可以同時來輸送,提高了輸送效率。為解決直線雙軌上輸送裝置存在的設備數(shù)量多、控制復雜、故障率高、投資大、使用成本高和效率低等技術難點,太原剛玉物流工程有限公司在 2004 年自主研發(fā)設計出多功能穿梭車,在原有直線型穿梭車的功能上,增加了貨物和托盤的外形檢測裝置,并且還增加了拆盤功能,設計出的拆盤裝置由舉升托板和舉升機構構組成[8]。
leroenPloeg等人[15]設計出一種新型的四輪AGV,并對其進行系統(tǒng)仿真研究;Francesco Amato等人[16]對立體倉庫中堆躲機和穿梭車的使用進行了優(yōu)化設計;Francesco Amato和Francesco Basile等人[17]在對堆躲機和穿梭車進行優(yōu)化的基礎上研究了倉儲系統(tǒng)的最優(yōu)控制;Shin-Ming Guo和Tsai-pei Liuli[18]對單穿梭車和雙穿梭車的自動存取系統(tǒng)進行了性能分析。
意人利的歐德公司生產(chǎn)的穿梭車[19]是一種由鋰電池驅(qū)動的半自動設備,它允許將放置貨物的托盤存儲到駛入式貨架中。將其放置在巷道內(nèi),它可以非常精確地對托盤進行存儲,重新理貨操作。
德國的德馬泰克公司[20]設計了一款多層穿梭車。這種多層穿梭車的存儲理念高度活,用于于對貨柜、吸塑盤和料箱的自動化存儲。多層穿梭車可以增強商品揀選和生產(chǎn)訂單之間的聯(lián)系,以顯著提高物流系統(tǒng)的速率、生產(chǎn)量和準確率。德馬泰克專注于簡單的穿梭車系統(tǒng)的設計,提供標準的模塊化組件,使系統(tǒng)能夠靈活的升級和更新,滿足用戶對產(chǎn)品的需求。該多層穿梭車采用先進的控制系統(tǒng),能與其他的存儲和搬運設備相互配合使用。
大多數(shù)穿梭車是根據(jù)應用環(huán)境和功能要求設計出的。本文研究的多功能穿梭車就是依據(jù)物流系統(tǒng)規(guī)劃方案、業(yè)務要求和穿梭車輸送能力(小車的載重量)等因素,在滿足倉庫需要的前提下,設計出以托盤為輸送單元的多功能穿梭車作為倉庫的輸送設備,應用表明可以節(jié)約大量的成本和提高倉庫的效率。
穿梭車在某些應用方面有很大的優(yōu)勢,如可以十分方便地與其他物流系統(tǒng)實現(xiàn)自動接入/輸出,如出/入庫站臺、各種緩沖站、輸送舉升機構和機器人等,按照計劃進行物料輸送。另外,穿梭車無需人員操作,因速度快、定位精度高而顯著降低了倉庫管理人員的工作量,提高了勞動生產(chǎn)率,同時穿梭車的應用大大提高企業(yè)的生產(chǎn)自動化和智能化,大幅度縮短生產(chǎn)周期使物流系統(tǒng)變得非常簡捷。
2 總體方案設計
2.1設計要求
2.1.1內(nèi)容要求
本課題基于對立體倉儲系統(tǒng)中穿梭車的了解,從而完成立體倉儲系統(tǒng)穿梭車蝸輪蝸桿舉升系統(tǒng)設計,具體內(nèi)容有穿梭車整體機械結構設計,舉升單元機械結構設計,并根據(jù)提出的技術參數(shù),給出穿梭車的整體設計方案。從而達到穿梭車的控制要求和技術參數(shù)。
2.1.2參數(shù)要求
穿梭車參數(shù)
托盤(mm):1200*1000
溫度范圍(°C)-10°C~+45°C; 0°C~-35°C(冷庫)
提升高度(mm) 45
自由高度(車身高)(mm): 176
小車長度(含防撞塊)(mm): 1100
小車寬度(含車輪導向)(mm): 950
小車自重(kg): < 240kg
額定負荷(kg): 1500kg
空載速度(m/min):~45-60m/min
滿載速度(m/min) :~35-50m/min
有效工作時間(h): 8h(冷庫6h)
2.2方案設計
穿梭車舉升機構構總體方案如下:
圖2-1 穿梭車舉升機構構方案簡圖
2.3方案確定與原理分析
其原理為:穿梭車內(nèi)部裝有舉升機構構,當穿梭車由運行機構運行到貨物下方時,直流電機帶動蝸桿旋轉(zhuǎn),蝸桿帶動蝸輪旋轉(zhuǎn),蝸輪旋轉(zhuǎn)帶動蝸輪軸旋轉(zhuǎn),二蝸輪軸端部連接有舉升螺母,通過螺旋傳動把蝸輪軸的旋轉(zhuǎn)運動轉(zhuǎn)換為直線運動,而舉升螺母通過螺栓固定于取物舉升平臺,由此實現(xiàn)舉升取物平臺帶動貨物升降取貨,把貨物舉起來后再降下隨后隨穿梭車移動送到所需位置。
3主要零部件的設計
3.1舉升電機的選擇
3.1.1電機類型介紹
電氣傳動系統(tǒng)由電動機、電源裝置和電氣傳動控制系統(tǒng)三部分組成。經(jīng)常使用的電動機類型可以分為:
常用的電動機類型及各類電動機的比較如下:
(1)籠型電動機:結構簡單、耐用、可靠、易維護、價格低、特性硬,但起動和調(diào)速性能差,起動時的功率因數(shù)低(0.25左右),一般無調(diào)速要求的機械應廣泛采用。在變頻電源供電的情況下可變頻調(diào)速。變極多速電動機,可分級調(diào)速,但體積大,價格較貴。
(2)繞線型電動機:因有滑環(huán),結構復雜,維修麻煩,價格比較貴。但由于它的起動力矩大,起動時的功率因數(shù)高,且可進行小范圍的速度調(diào)節(jié),控制設備也簡單,故適用于電網(wǎng)容量小,起動次數(shù)多的機械,如起重機上的機械設備。此外,繞線型電動機也用于需要軟化特性的機械,如帶飛輪的剪斷機等。
繞線型電動機的自然機械特性和表達式與籠型機相同。
(3)同步電動機:恒轉(zhuǎn)速輸出,功率因數(shù)可調(diào),價格貴,一般只在不需要調(diào)速的高電壓、大容量的機械上采用,以改善并提高電網(wǎng)的功率因數(shù),如鼓風機、空壓機及水泵等設備。
功率因數(shù)高,效率高,因此需要的變頻裝置的容量小。
能有效的抑制電樞反應,承受沖擊的能力強和運行穩(wěn)定性高。由于轉(zhuǎn)子側為直流勵磁,有可能使定子和轉(zhuǎn)子間的氣隙做大,利于電機制造。此外,大功率異步機還必須面對轉(zhuǎn)子撓度、軸承精度而引起的定子和轉(zhuǎn)子間的相擦問題,較小的氣隙對制造或維修都帶來較大困難。
同步電動機的轉(zhuǎn)動慣量小,具有較高的動態(tài)響應和靜態(tài)精度。
大容量同步機的定子重量和轉(zhuǎn)子重量比異步機輕。以同步機的定子重量和轉(zhuǎn)子重量為100%,則異步機的定子重量和轉(zhuǎn)子重量則為116%和109%,因此,同步機外形尺寸小。但是,同步機多一套勵磁系統(tǒng),控制系統(tǒng)復雜,需增設轉(zhuǎn)子位置檢測環(huán)節(jié),結構也比異步機復雜。
(4)直流電動機: 他激電動機的調(diào)速性能好、范圍寬,適用于各種負載特性的需要,但比交流電動機的價格貴、維護復雜,且需要直流電源,因此,只在技術經(jīng)濟合理的條件下方可使用。
串激電動機的的特點是起動力矩大、過載能力強、特性軟,適用于牽引機械上。
復激電動機的起動轉(zhuǎn)矩和過載能力均比并勵電動機大,但調(diào)速范圍小。接成積復激時,適用于起動轉(zhuǎn)矩大,負載具有強烈變化的設備。
因此,電動機的類型選擇,應符合下列規(guī)定(GB50055-93第2.2.2條):
(1)機械對起動、調(diào)速及制動無特殊要求時,應采用籠型電動機,但功率較大且連續(xù)工作的機械,當技術經(jīng)濟上合理時,宜采用同步電動機;
(2)符合下列情況之一時,宜采用繞線式電動機:
重載起動的機械,選用籠型電動機不能滿足起動要求或加大功率不合理時;
調(diào)速范圍不大的機械,且低速運行時間較短時。
(3)機械對起動、調(diào)速及制動有特殊要求時,電動機的類型及其調(diào)速方式應根據(jù)技術經(jīng)濟比較確定。在交流電動機不能滿足機械要求的特性時,宜采用直流電動機。交流電源消失后必須工作的應急機組,亦可采用直流電動機。
變負載運行的風機和泵類機械,當技術經(jīng)濟上合理時,應采用調(diào)速裝置,并應選用相應類型的電動機。
3.1.2選擇電動機類型
電動機是標準部件。因為穿梭車采用蓄電池供電,因此選用直流電機。
直流電動機: 他激電動機的調(diào)速性能好、范圍寬,適用于各種負載特性的需要,但比交流電動機的價格貴、維護復雜,且需要直流電源,因此,只在技術經(jīng)濟合理的條件下方可使用。
串激電動機的的特點是起動力矩大、過載能力強、特性軟,適用于牽引機械上。
復激電動機的起動轉(zhuǎn)矩和過載能力均比并勵電動機大,但調(diào)速范圍小。接成積復激時,適用于起動轉(zhuǎn)矩大,負載具有強烈變化的設備。
3.1.3 電動機功率的選擇
標準電動機的容量由額定功率表示。所選電動機的額定功率應該等于或稍大于工作要求的功率。容量小于工作要求,則不能保證工作機的正常工作,或使電動機長期過載、發(fā)熱大而過早損壞;容量過大,則增加成本,并且由于效率和功率因數(shù)低而造成電能浪費。
(1)舉升軸的功率為:
取舉升軸扭矩為T=300N.m,轉(zhuǎn)速n=45r/min
(2)電動機的輸出功率為
——電動機至舉升軸軸的傳動裝置總效率。
聯(lián)軸器傳動效率,蝸桿傳動效率,滾子軸承傳動效率
則從電動機到工作機傳送鏈的總效率為:
(3)電動機所需功率為:
查《機械設計實踐與創(chuàng)新》表19-1選取電動機額定功率為2.2kw。
3.1.4 電動機轉(zhuǎn)速的選擇
舉升軸轉(zhuǎn)速:
蝸輪蝸桿傳動比為:
所以電動機實際轉(zhuǎn)速的推薦值為:
符合這一范圍的同步轉(zhuǎn)速為750、1000、1500r/min。
綜合考慮傳動裝置機構緊湊性和經(jīng)濟性,選用同步轉(zhuǎn)速1000r/min的電機。
型號為Y112M-6,滿載轉(zhuǎn)速,功率2.2。
3.2傳動參數(shù)計算
3.2.1傳動比的計算
傳動比為:
3.2.2各軸的轉(zhuǎn)速
1軸
2軸 ;
3軸 ;
3.2.3各軸的輸入功率
1軸 ;
2軸 ;
3軸 ;
3.2.4各軸的輸入轉(zhuǎn)矩
1軸 ;
2軸 ;
3軸 ;
將各軸動力參數(shù)整理如下表:
軸名
功率
轉(zhuǎn)矩
轉(zhuǎn)速
傳動比
電機軸
2.2
22.35
940
1軸
2.178
22.13
940
1
2軸
1.71
356.17
45.85
20.5
3軸
1.66
345.76
45.85
1
3.3蝸輪蝸桿設計
3.3.1選擇蝸輪蝸桿的傳動類型
傳動參數(shù):
根據(jù)設計要求選用阿基米德蝸桿即ZA式。
3.3.2選擇材料
設
滑動速度:
蝸桿選45鋼,齒面要求淬火,硬度為45-55HRC.
蝸輪用ZCuSn10P1,金屬模制造。
為了節(jié)約材料齒圈選青銅,而輪芯用灰鑄鐵HT100制造
① 確定許用接觸應力
根據(jù)選用的蝸輪材料為ZCuSn10P1,金屬模制造,蝸桿的螺旋齒面硬度>45HRC,可從文獻[1]P254表11-7中查蝸輪的基本許用應力
應力循環(huán)次數(shù)
壽命系數(shù)
則
② 確定許用彎曲應力
從文獻[1]P256表11-8中查得有ZCuSn10P1制造的蝸輪的基本許用彎曲應力[]=56MPa
壽命系數(shù)
3.3.3按計齒面接觸疲勞強度計算進行設
根據(jù)閉式蝸桿傳動的設計進行計算,先按齒面接觸疲勞強度計進行設計,再校對齒根彎曲疲勞強度。
式中:
蝸桿頭數(shù):
蝸輪齒數(shù):
蝸輪轉(zhuǎn)矩:
載荷系數(shù):
因工作比較穩(wěn)定,取載荷分布不均系數(shù);由文獻[1]P253表11-5選取使用系數(shù);由于轉(zhuǎn)速不大,工作沖擊不大,可取動載系;則
選用的是45鋼的蝸桿和蝸輪用ZCuSn10P1匹配的緣故,有故有:
查《機械設計》表7.3
得應取蝸桿模數(shù):
取蝸桿直徑系數(shù):
蝸桿分度圓直徑:
蝸桿導程角:
蝸輪分度圓直徑:
變位系數(shù):
中心距:
蝸輪圓周速度:
3.3.4蝸桿與蝸輪的主要參數(shù)與幾何尺寸
① 蝸桿
軸向尺距
直徑系數(shù)
齒頂圓直徑
齒根圓直徑
蝸桿螺線部分長度:取90mm
② 蝸輪
蝸輪齒數(shù)
蝸輪分度圓直徑
齒頂直徑
齒根圓直徑
咽喉母圓半徑
蝸輪外圓直徑
蝸輪寬度
3.3.5校核齒根彎曲疲勞強度
當量齒數(shù)
根據(jù)
從圖11-9中可查得齒形系數(shù)Y=2.37
螺旋角系數(shù):
許用彎曲應力:
從文獻[1]P256表11-8中查得有ZCuSn10P1制造的蝸輪的基本許用彎曲應力[]=56MPa
壽命系數(shù)
可以得到:<
因此彎曲強度是滿足的。
3.3.6驗算效率
已知;;與相對滑動速度有關。
從文獻[1]P264表11-18中用差值法查得: 代入式中,得大于原估計值,因此不用重算。
3.3.7精度等級公差和表面粗糙度的確定
考慮到所設計的蝸桿傳動是動力傳動,屬于通用機械減速器,從GB/T10089-1988圓柱蝸桿,蝸輪精度選擇8級精度,側隙種類為f,標注為8f GB/T10089-1988。然后由有關手冊查得要求的公差項目及表面粗糙度,此處從略。詳細情況見零件圖。
3.3.8蝸桿傳動的熱平衡計算
由于傳動效率較低,對于長期運轉(zhuǎn)的蝸桿傳動,會產(chǎn)生較大的熱量。如果產(chǎn)生的熱量不能及時散去,則系統(tǒng)的熱平衡溫度將過高,就會破壞潤滑狀態(tài),從而導致系統(tǒng)進一步惡化。
初步估計散熱面積:
取(周圍空氣的溫度)為。
3.4軸的設計與校核
3.4.1輸入軸
① 材料的選擇
由表16.1 查得 用45號鋼,進行調(diào)質(zhì)處理,
由表16.3得
② 估算軸的最小直徑
根據(jù)表11.6,取=112為取值范圍
估算軸的直徑:
因為軸上開有兩個鍵槽,考慮到鍵槽對軸強度的削落,應增大軸徑,此時軸徑應增大5%~10%
考慮到與聯(lián)軸器配合,查設計手冊
軸段①上有聯(lián)軸器需要定位,因此軸段②應有軸肩
軸段③安裝軸承,必須滿足內(nèi)徑標準,故
軸段④
軸段⑤
按彎扭合成強度校核軸頸
圓周力
徑向力
水平
垂直
合成
當量彎矩
校核
繪制軸的受力簡圖
繪制垂直面彎矩圖
軸承支反力:
FAY=FBY=Fr1/2=540.2N
FAZ=FBZ=/2=406.6N
由兩邊對稱,知截面C的彎矩也對稱。截面C在垂直面彎矩為:
MC1=FAyL/2=16.9N·m
繪制水平面彎矩圖
截面C在水平面上彎矩為:
MC2=FAZL/2=406.6×62.5×=12.7N·m
繪制合彎矩圖
MC=(MC12+MC22)1/2=(16.92+12.72)1/2=21.1N·m
繪制扭矩圖
轉(zhuǎn)矩:T= TI=20.33N·m
校核危險截面C的強度
∵由教材P373式(15-5)經(jīng)判斷軸所受扭轉(zhuǎn)切應力為脈動循環(huán)應力,取α=0.6,
前已選定軸的材料為45鋼,調(diào)質(zhì)處理,由教材P362表15-1查得,因此<,故安全。
∴該軸強度足夠。
3.4.2輸出軸
① 材料的選擇
由表16.1 查得 用45號鋼,進行調(diào)質(zhì)處理,
由表16.3得
② 估算軸的最小直徑
根據(jù)表11.6,取=110為取值范圍
估算軸的直徑:
因為軸上開有一個鍵槽,考慮到鍵槽對軸強度的削落,應增大軸徑,此時軸徑應增大5%
,取
③ 軸上的零件定位,固定和裝配
單級減速器中,可以將蝸輪安排在箱體中央,相對兩軸承對稱分布,蝸輪左面用軸肩定位,右面用套筒軸向定位,周向定位采用鍵和過渡配合,兩軸承分別以軸承肩和套筒定位,周向定位則用過渡配合或過盈配合,軸呈階梯狀,左軸承從左面裝入,蝸輪套筒,右軸承和鏈輪依次從右面裝入。
④ 確定軸的各段直徑和長度
I段:直徑d1=40mm 長度取L1=110mm
II段:由教材P364得:h=0.08 d1=0.08×4=3.2mm
直徑d2=d1+2h=40+6.4=48mm,長度取L2=60 mm
III段:直徑d3=50mm
由GB/T297-1994初選用30210型圓錐滾子軸承,其內(nèi)徑為50mm,寬度為20mm。故III段長:L3=44mm
Ⅳ段:直徑d4=54mm,蝸輪輪轂寬為70mm,取L4=68mm
Ⅴ段:由教材P364得:h=0.08 d5=0.08×54=4.32mm
D5=d4+2h=54+2×4.32≈62mm長度取L5=22mm
Ⅵ段:直徑d6=d3=50mm L6=20mm
由上述軸各段長度可算得軸支承跨距L=134mm
⑤ 按彎扭復合強度計算
求分度圓直徑:已知d2=205mm
求轉(zhuǎn)矩:已知T2= TII=304.27N·m
求圓周力Ft:根據(jù)教材P198(10-3)式得
=2T2/d2=590 N
求徑向力Fr:根據(jù)教材P198(10-3)式得
Fr=·tanα=3586.4×tan200=1370N
∵兩軸承對稱
∴LA=LB=75mm
求支反力FAY、FBY、FAZ、FBZ
FAY=FBY=Fr/2=107.35N
FAX=FBX=/2=295N
由兩邊對稱,截面C的彎矩也對稱,截面C在垂直面彎矩為
MC1=FAYL/2=107.35×75×=8N·m
截面C在水平面彎矩為
MC2=FAXL/2=295×75×=22.125N·m
計算合成彎矩
MC=(MC12+MC22)1/2=(82+22.1252)1/2=23.54N·m
校核危險截面C的強度由式(15-5)
∵由教材P373式(15-5)經(jīng)判斷軸所受扭轉(zhuǎn)切應力為對稱循環(huán)變應力,取α=1,
前已選定軸的材料為45鋼,調(diào)質(zhì)處理,由教材P362表15-1查得,因此<,故安全。
∴此軸強度足夠
3.5減速器箱體設計
3.5.1箱體結構設計
減速器箱體是支承和固定軸系部件、保證傳動零件正常嚙合、良好潤滑和密封的基礎零件,因此,應具有足夠的強度和剛度。為提高箱體強度,采用鑄造的方法制造。
為便于軸系部件的安裝和拆卸,箱體采用剖分式結構,由箱座和箱蓋組成,剖分面取軸的中心線所在平面,箱座和箱蓋采用普通螺栓連接,圓柱銷定位。
減速器箱體是支承和固定軸系部件、保證傳動零件正常嚙合、良好潤滑和密封的基礎零件,因此,應具有足夠的強度和剛度。為提高箱體強度,采用鑄造的方法制造。
首先保證足夠的箱體壁厚,箱座和箱蓋的壁厚取。
其次,為保證減速器箱體的支承剛度,箱體軸承座處要有足夠的厚度,并設置加強肋,且選用外肋結構。為提高軸承座孔處的聯(lián)接剛度,座孔兩側的連接螺栓應盡量靠近(以避免與箱體上固定軸承蓋的螺紋孔干涉為原則)。為提高聯(lián)接剛度,在軸承座旁聯(lián)接螺栓處做出凸臺,要有一定高度,以留出足夠的扳手空間。由于減速器上各軸承蓋的外徑不等,各凸臺高度設計一致。
另外,為保證箱座與箱蓋的聯(lián)接剛度,箱蓋與箱座聯(lián)接凸緣應有較大的厚度。
為保證箱體密封,除箱體剖分面聯(lián)接凸緣要有足夠的寬度外,合理布置箱體凸緣聯(lián)接螺栓,采用對稱均勻布置,并不與吊耳、吊鉤和定位銷等發(fā)生干涉。
3.5.2油面位置及箱座高度的確定
對于圓柱齒輪,通常取浸油深度為一個齒高,對于多級傳動中的低速級大齒輪,其浸油深度不得超過其分度圓半徑的1/3。為避免傳動零件傳動時將沉積在油池底部的污物攪起,造成齒面磨損,應使大齒輪齒頂圓距油齒底面的的距離不小于30~50mm。取45mm。
3.5.3箱體結構的工藝性
由于采用鑄造箱體,所以要注意鑄造的工藝要求,例如注意力求壁厚均勻、過渡平緩,外形簡單;考慮液態(tài)金屬的流動性,箱體壁厚不應過薄,砂形鑄造圓角半徑??;為便于造型時取模,鑄件表面沿拔模方向設計成~的拔模斜度,以便拔模方便。箱體與其他零件的結合處,如箱體軸承座端面與軸承蓋、窺視孔與視孔蓋、螺塞等處均做出凸臺,以便于機加工。
設計箱體結構形狀時,應盡量減小機械加工面積,減少工件和刀鋸的的調(diào)整次數(shù)。例如同一軸心線上的兩軸承座孔的直徑應盡量一致,以便鏜孔并保證鏜孔精度,取兩軸承座孔的直徑相同。箱體的加工面與非加工面必須嚴格分開,加工處做出凸臺()。螺栓頭部或螺母接觸處做出沉頭座坑。箱體形狀力求均勻、美觀。
3.5.5箱體尺寸設計
要設計啟蓋螺釘,其上的螺紋長度要大于箱蓋聯(lián)接凸緣的厚度,釘桿端部要做成圓柱形,加工成半圓形,以免頂壞螺紋。
為了保證剖分式箱體軸承座孔的加工與裝配精度,在箱體聯(lián)接凸緣的長度方向兩端各設一圓錐定位銷。兩銷間的距離盡量遠,以提高定位精度。定位銷直徑一般取,取,長度應大于箱蓋和箱座聯(lián)接凸緣的總厚度,以利于裝拆。
箱體相關尺寸匯總如下:
名 稱
代號
一級齒輪減速器
計算結果
機座壁厚
δ
0.04a+3mm≥8mm
8
機蓋壁厚
δ1
0.85δ
8
機座凸緣厚度
b
1.5δ
20
機蓋凸緣厚度
b1
1.5δ1
20
機座底凸緣厚度
b2
2.5δ
30
地腳螺釘直徑
df
0.036a+12mm
16
地腳螺釘數(shù)目
n
4
軸承旁連接螺栓直徑
d1
0.75 df
16
機座與機蓋連接螺栓直徑
d2
(0.5~0.6) df
12
連接螺栓d2的間距
l
150~200mm
軸承端螺釘直徑
d3
(0.4~0.5) df
6
窺視孔蓋螺釘直徑
d4
(0.3~0.4) df
5
定位銷直徑
d
(0.7~0.8) d2
6
df、d1 、d2至外機壁距離
c1
見表2
22,16,13
df 、d2至緣邊距離
c2
見表2
20,11
軸承旁凸臺半徑
R1
c2
20
凸臺高度
h
根據(jù)低速軸承座外徑確定
50
外機壁到軸承端面距離
l1
c1+ c2+(5~8)mm
48
內(nèi)機壁到軸承端面距離
l2
δ+ c1+ c2+(5~8)mm
56
蝸輪齒頂圓與內(nèi)機壁距離
△1
≥1.2δ
10
蝸輪端面與內(nèi)機壁的距離
△2
≥δ
8
機座肋厚
m
m≈0.85δ
7
軸承端蓋外徑
D2
軸承座孔直徑+(5~5.5) d3
125
軸承端蓋凸緣厚度
e
(1~1.2) d3
10
軸承旁連接螺栓距離
s
盡量靠近,以Md1和Md3不發(fā)生干涉為準
4 標準件的選用與校核
4.1軸承的選用與校核
(1)蝸桿軸上的軸承壽命校核
在設計蝸桿選用的軸承為30206型圓錐滾子軸承,由手冊查得
(1)由滾動軸承樣本可查得,軸承背對背或面對 面成對安裝在軸上時,當量載荷可以按下式計算:
1)當
2)當
,且工作平穩(wěn),取,按上面式(2)計算當量動載荷,即
(2)計算預期壽命
(3)求該軸承應具有的基本額定動載荷
故選擇此對軸承在軸上合適.
(2)蝸輪軸上的軸承校核
①求作用在軸承上的載荷
②計算動量載荷
在設計時選用的30210型圓錐滾子軸承,查手冊知
根據(jù),查得
查得 所以
③校核軸承的當量動載荷
已知,所以
故選用該軸承合適.
4.2鍵的選用與校核
(1)蝸桿軸上鍵的強度校核
在前面設計軸此處選用平鍵聯(lián)接,尺寸為,鍵長為45mm.
鍵的工作長度
鍵的工作高度
可得鍵聯(lián)接許用比壓
故該平鍵合適.
(2)蝸輪軸上鍵的強度校核
在設計時選用平鍵聯(lián)接,尺寸為,鍵長度為63mm
鍵的工作長度
鍵的工作高度
得鍵聯(lián)接許用比壓
故選用此鍵合適.
4.3聯(lián)軸器的選用
蝸桿軸上聯(lián)軸器的選用
根據(jù)前面計算,蝸桿軸最小直徑:
取
查機械手冊,根據(jù)軸徑和計算轉(zhuǎn)矩選用彈性柱銷聯(lián)軸器:
聯(lián)軸器轉(zhuǎn)矩計算
查表課本14-1, K=1.3,則
啟動載荷為名義載荷的1.25倍,則
按照計算轉(zhuǎn)矩應小于聯(lián)軸器公稱轉(zhuǎn)矩的條件,查手冊選擇聯(lián)軸器型號為選用HL3(J1型)彈性柱銷聯(lián)軸器,其允許最大扭矩[T]=630,許用最高轉(zhuǎn)速 n=5000,半聯(lián)軸器的孔徑d=35,孔長度l=60mm,半聯(lián)軸器與軸配合的轂孔長度L1=82。
4.4潤滑與密封
(1)軸承潤滑
蝸桿軸上軸承:
蝸輪軸上軸承:
軸承均采用脂潤滑。選用通用鋰基潤滑脂(GB7324-87),牌號為ZGL—1。其有良好的耐水性和耐熱性。適用于-20°至120°寬溫度范圍內(nèi)各種機械的滾動軸承、滑動軸承及其他摩擦部位的潤滑。潤滑脂的裝填量不宜過多,一般不超過軸承內(nèi)部空間容積的1/3~2/3。
(2)蝸輪蝸桿潤滑
蝸輪蝸桿的潤滑方法采用浸油潤滑。在蝸輪傳動時,就把潤滑油帶到嚙合的齒面上,同時也將油甩到箱壁上,借以散熱。蝸輪浸入油中油的深度不宜超過高速級1/2,亦不應小于1/4。為避免蝸輪轉(zhuǎn)動時將沉積在油池底部的污物攪起,造成齒面磨損,應使大蝸輪齒頂距油池底面的距離不小于30~50mm。現(xiàn)取為
4.5連接螺栓的選用與校核
螺栓在舉升機構中起連接作用,主要承受剪切變形。校核時只考慮剪切變形就可以。以下是對圖2.4中的1、3、4處的螺栓進行強度校核。螺栓材料為Q235-A鋼,許用剪切應力[]=98MPa。
(1)1處螺栓受的剪切力如圖3.15所示
圖3.15 1處螺栓所受剪切力圖
(a)舉升機構在最低點時螺栓剪切力強度計算
水平方向承受的應力為
豎直方向承受的應力為
根據(jù)第三強度理論 =53.89MPa
滿足強度要求。
(b)舉升到1m時螺栓剪切力強度計算
水平方向承受的應力為
豎直方向承受的應力為
根據(jù)第三強度理論
經(jīng)計算滿足強度要求。
(2)3處螺栓受的剪切力如圖3.16所示
圖3.16 3處螺栓所受剪切力圖
(a)舉升機構在最低點時螺栓剪切力強度計算
水平方向承受的應力為
豎直方向承受的應力為
根據(jù)第三強度理論
經(jīng)計算滿足強度要求
(b)舉升到1m時螺栓剪切力強度計算
水平方向承受的應力為
豎直方向承受的應力為
根據(jù)第三強度理論
經(jīng)計算滿足強度要求。
(3)5處螺栓受的剪切力如圖3.17所示
圖3.17 5處螺栓所受的剪切力圖
(a)舉升機構在最低點時螺栓剪切力強度計算
水平方向承受的應力為
豎直方向承受的應力為
根據(jù)第三強度理論
經(jīng)計算滿足強度要求
(b)舉升到1m時螺栓剪切力強度計算
水平方向承受的應力為
豎直方向承受的應力為
根據(jù)第三強度理論
經(jīng)計算滿足強度要求。校核后的結果表明螺栓材料為Q235鋼是符合要求的。
5 基于Pro/E的三維設計
5.1 Pro/E軟件概述
Pro/Engineer操作軟件是美國參數(shù)技術公司(PTC)旗下的CAD/CAM/CAE一體化的三維軟件。Pro/Engineer軟件以參數(shù)化著稱,是參數(shù)化技術的最早應用者,在目前的三維造型軟件領域中占有著重要地位。Pro/Engineer作為當今世界機械CAD/CAE/CAM領域的新標準而得到業(yè)界的認可和推廣,是現(xiàn)今主流的CAD/CAM/CAE軟件之一,特別是在國內(nèi)產(chǎn)品設計領域占據(jù)重要位置。
Pro/Engineer和WildFire是PTC官方使用的軟件名稱,但在中國用戶所使用的名稱中,并存著多個說法,比如ProE、Pro/E、破衣、野火等等都是指Pro/Engineer軟件,proe2001、proe2.0、proe3.0、proe4.0、proe5.0、creo1.0\creo2.0等等都是指軟件的版本。
Pro/E第一個提出了參數(shù)化設計的概念,并且采用了單一數(shù)據(jù)庫來解決特征的相關性問題。另外,它采用模塊化方式,用戶可以根據(jù)自身的需要進行選擇,而不必安裝所有模塊。Pro/E的基于特征方式,能夠?qū)⒃O計至生產(chǎn)全過程集成到一起,實現(xiàn)并行工程設計。它不但可以應用于工作站,而且也可以應用到單機上。Pro/E采用了模塊方式,可以分別進行草圖繪制、零件制作、裝配設計、鈑金設計、加工處理等,保證用戶可以按照自己的需要進行選擇使用。
(1)參數(shù)化設計
相對于產(chǎn)品而言,我們可以把它看成幾何模型,而無論多么復雜的幾何模型,都可以分解成有限數(shù)量的構成特征,而每一種構成特征,都可以用有限的參數(shù)完全約束,這就是參數(shù)化的基本概念。但是無法在零件模塊下隱藏實體特征。
(2)基于特征建模
Pro/E是基于特征的實體模型化系統(tǒng),工程設計人員采用具有智能特性的基于特征的功能去生成模型,如腔、殼、倒角及圓角,您可以隨意勾畫草圖,輕易改變模型。這一功能特性給工程設計者提供了在設計上從未有過的簡易和靈活。
(3)單一數(shù)據(jù)庫(全相關)
Pro/Engineer是建立在統(tǒng)一基層上的數(shù)據(jù)庫上,不像一些傳統(tǒng)的CAD/CAM系統(tǒng)建立在多個數(shù)據(jù)庫上。所謂單一數(shù)據(jù)庫,就是工程中的資料全部來自一個庫,使得每一個獨立用戶在為一件產(chǎn)品造型而工作,不管他是哪一個部門的。換言之,在整個設計過程的任何一處發(fā)生改動,亦可以前后反應在整個設計過程的相關環(huán)節(jié)上。例如,一旦工程詳圖有改變,NC(數(shù)控)工具路徑也會自動更新;組裝工程圖如有任何變動,也完全同樣反應在整個三維模型上。這種獨特的數(shù)據(jù)結構與工程設計的完整的結合,使得一件產(chǎn)品的設計結合起來。這一優(yōu)點,使得設計更優(yōu)化,成品質(zhì)量更高,產(chǎn)品能更好地推向市場,價格也更便宜。
Pro/Engineer是軟件包,并非模塊,它是該系統(tǒng)的基本部分,其中功能包括參數(shù)化功能定義、實體零件及組裝造型,三維上色,實體或線框造型,完整工程圖的產(chǎn)生及不同視圖展示(三維造型還可移動,放大或縮小和旋轉(zhuǎn))。Pro/Engineer是一個功能定義系統(tǒng),即造型是通過各種不同的設計專用功能來實現(xiàn),其中包括:筋(Ribs)、槽(Slots)、倒角(Chamfers)和抽殼(Shells)等,采用這種手段來建立形體,對于工程師來說是更自然,更直觀,無需采用復雜的幾何設計方式。這系統(tǒng)的參數(shù)比功能是采用符號式的賦予形體尺寸,不象其他系統(tǒng)是直接指定一些固定數(shù)值于形體,這樣工程師可任意建立形體上的尺寸和功能之間的關系,任何一個參數(shù)改變,其他相關的特征也會自動修正。這種功能使得修改更為方便和可令設計優(yōu)化更趨完美。造型不單可以在屏幕上顯示,還可傳送到繪圖機上或一些支持Postscript格式的彩色打印機。Pro/Engineer還可輸出三
收藏