2019年高考數(shù)學真題分類匯編 10.6 圓錐曲線的綜合問題 理 .doc
《2019年高考數(shù)學真題分類匯編 10.6 圓錐曲線的綜合問題 理 .doc》由會員分享,可在線閱讀,更多相關《2019年高考數(shù)學真題分類匯編 10.6 圓錐曲線的綜合問題 理 .doc(4頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019年高考數(shù)學真題分類匯編 10.6 圓錐曲線的綜合問題 理考點一定值與最值問題1.(xx湖北,9,5分)已知F1,F2是橢圓和雙曲線的公共焦點,P是它們的一個公共點,且F1PF2=,則橢圓和雙曲線的離心率的倒數(shù)之和的最大值為()A. B. C.3 D.2答案A2.(xx福建,9,5分)設P,Q分別為圓x2+(y-6)2=2和橢圓+y2=1上的點,則P,Q兩點間的最大距離是()A.5 B.+ C.7+ D.6答案D3.(xx四川,10,5分)已知F為拋物線y2=x的焦點,點A,B在該拋物線上且位于x軸的兩側,=2(其中O為坐標原點),則ABO與AFO面積之和的最小值是()A.2 B.3 C. D.答案B4.(xx安徽,19,13分)如圖,已知兩條拋物線E1:y2=2p1x(p10)和E2:y2=2p2x(p20),過原點O的兩條直線l1和l2,l1與E1,E2分別交于A1,A2兩點,l2與E1,E2分別交于B1,B2兩點.(1)證明:A1B1A2B2;(2)過O作直線l(異于l1,l2)與E1,E2分別交于C1,C2兩點.記A1B1C1與A2B2C2的面積分別為S1與S2,求的值.解析(1)證明:設直線l1,l2的方程分別為y=k1x,y=k2x(k1,k20),則由得A1,由得A2.同理可得B1,B2.所以=2p1,=2p2,故=,所以A1B1A2B2.(2)由(1)知A1B1A2B2,同理可得B1C1B2C2,C1A1C2A2.所以A1B1C1A2B2C2.因此=.又由(1)中的=知=.故=.5.(xx浙江,21,15分)如圖,設橢圓C:+=1(ab0),動直線l與橢圓C只有一個公共點P,且點P在第一象限.(1)已知直線l的斜率為k,用a,b,k表示點P的坐標;(2)若過原點O的直線l1與l垂直,證明:點P到直線l1的距離的最大值為a-b.解析(1)設直線l的方程為y=kx+m(kb0)的左、右焦點分別為F1、F2,離心率為e1;雙曲線C2:-=1的左、右焦點分別為F3、F4,離心率為e2,已知e1e2=,且|F2F4|=-1.(1)求C1,C2的方程;(2)過F1作C1的不垂直于y軸的弦AB,M為AB的中點,當直線OM與C2交于P,Q兩點時,求四邊形APBQ面積的最小值.解析(1)因為e1e2=,所以=,即a4-b4=a4,因此a2=2b2,從而F2(b,0),F4(b,0),于是b-b=|F2F4|=-1,所以b=1,所以a2=2.故C1,C2的方程分別為+y2=1,-y2=1.(2)因為AB不垂直于y軸,且過點F1(-1,0),故可設直線AB的方程為x=my-1.由得(m2+2)y2-2my-1=0,易知此方程的判別式大于0,設A(x1,y1),B(x2,y2),則y1,y2是上述方程的兩個實根,所以y1+y2=,y1y2=.因此x1+x2=m(y1+y2)-2=,于是AB的中點M的坐標為.故直線PQ的斜率為-,則PQ的方程為y=-x,即mx+2y=0.由得(2-m2)x2=4,所以2-m20,且x2=,y2=,從而|PQ|=2=2.設點A到直線PQ的距離為d,則點B到直線PQ的距離也為d,所以2d=,因為點A,B在直線mx+2y=0的異側,所以(mx1+2y1)(mx2+2y2)0,于是|mx1+2y1|+|mx2+2y2|=|mx1+2y1-mx2-2y2|,從而2d=.又因為|y1-y2|=,所以2d=.故四邊形APBQ的面積S=|PQ|2d=2 .而02-m2b0)的焦距為4,其短軸的兩個端點與長軸的一個端點構成正三角形.(1)求橢圓C的標準方程;(2)設F為橢圓C的左焦點,T為直線x=-3上任意一點,過F作TF的垂線交橢圓C于點P,Q.(i)證明:OT平分線段PQ(其中O為坐標原點);(ii)當最小時,求點T的坐標.解析(1)由已知可得解得a2=6,b2=2,所以橢圓C的標準方程是+=1.(2)(i)由(1)可得,F的坐標是(-2,0),設T點的坐標為(-3,m).則直線TF的斜率kTF=-m.當m0時,直線PQ的斜率kPQ=,直線PQ的方程是x=my-2.當m=0時,直線PQ的方程是x=-2,也符合x=my-2的形式.設P(x1,y1),Q(x2,y2),將直線PQ的方程與橢圓C的方程聯(lián)立,得消去x,得(m2+3)y2-4my-2=0,其判別式=16m2+8(m2+3)0.所以y1+y2=,y1y2=,x1+x2=m(y1+y2)-4=.所以PQ的中點M的坐標為.所以直線OM的斜率kOM=-,又直線OT的斜率kOT=-,所以點M在直線OT上,因此OT平分線段PQ.(ii)由(i)可得,|TF|=,|PQ|=.所以=.當且僅當m2+1=,即m=1時,等號成立,此時取得最小值.所以當最小時,T點的坐標是(-3,1)或(-3,-1).考點二存在性問題- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 2019年高考數(shù)學真題分類匯編 10.6 圓錐曲線的綜合問題 2019 年高 數(shù)學 分類 匯編 圓錐曲線 綜合 問題
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權,請勿作他用。
鏈接地址:http://italysoccerbets.com/p-3245425.html