2019-2020年高中數(shù)學 1.1.3 集合的基本運算教案 新人教B版必修1.doc
《2019-2020年高中數(shù)學 1.1.3 集合的基本運算教案 新人教B版必修1.doc》由會員分享,可在線閱讀,更多相關(guān)《2019-2020年高中數(shù)學 1.1.3 集合的基本運算教案 新人教B版必修1.doc(3頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學 1.1.3 集合的基本運算教案 新人教B版必修1教學目的:(1)理解兩個集合的并集與交集的的含義,會求兩個簡單集合的并集與交集;(2)理解在給定集合中一個子集的補集的含義,會求給定子集的補集;(3)能用Venn圖表達集合的關(guān)系及運算,體會直觀圖示對理解抽象概念的作用。課 型:新授課教學重點:集合的交集與并集、補集的概念; 教學難點:集合的交集與并集、補集“是什么”,“為什么”,“怎樣做”;教學過程:一、 引入課題我們兩個實數(shù)除了可以比較大小外,還可以進行加法運算,類比實數(shù)的加法運算,兩個集合是否也可以“相加”呢?思考(P9思考題),引入并集概念。二、 新課教學1. 并集一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,稱為集合A與B的并集(Union)記作:AB讀作:“A并B”即: AB=x|xA,或xB ABABAVenn圖表示:?說明:兩個集合求并集,結(jié)果還是一個集合,是由集合A與B的所有元素組成的集合(重復元素只看成一個元素)。例題(P9-10例4、例5)說明:連續(xù)的(用不等式表示的)實數(shù)集合可以用數(shù)軸上的一段封閉曲線來表示。問題:在上圖中我們除了研究集合A與B的并集外,它們的公共部分(即問號部分)還應是我們所關(guān)心的,我們稱其為集合A與B的交集。2. 交集一般地,由屬于集合A且屬于集合B的元素所組成的集合,叫做集合A與B的交集(intersection)。記作:AB讀作:“A交B”即: AB=x|A,且xB交集的Venn圖表示說明:兩個集合求交集,結(jié)果還是一個集合,是由集合A與B的公共元素組成的集合。例題(P9-10例6、例7)拓展:求下列各圖中集合A與B的并集與交集A BA(B)AB BAB A說明:當兩個集合沒有公共元素時,兩個集合的交集是空集,而不能說兩個集合沒有交集3. 補集全集:一般地,如果一個集合含有我們所研究問題中所涉及的所有元素,那么就稱這個集合為全集(Universe),通常記作U。補集:對于全集U的一個子集A,由全集U中所有不屬于集合A的所有元素組成的集合稱為集合A相對于全集U的補集(plementary set),簡稱為集合A的補集,記作:CUA即:CUA=x|xU且xA補集的Venn圖表示說明:補集的概念必須要有全集的限制例題(P12例8、例9)4. 求集合的并、交、補是集合間的基本運算,運算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問題時,常常從這兩個字眼出發(fā)去揭示、挖掘題設條件,結(jié)合Venn圖或數(shù)軸進而用集合語言表達,增強數(shù)形結(jié)合的思想方法。5. 集合基本運算的一些結(jié)論:ABA,ABB,AA=A,A=,AB=BAAAB,BAB,AA=A,A=A,AB=BA(CUA)A=U,(CUA)A= 若AB=A,則AB,反之也成立若AB=B,則AB,反之也成立若x(AB),則xA且xB若x(AB),則xA,或xB6. 課堂練習(1)設A=奇數(shù)、B=偶數(shù),則AZ=A,BZ=B,AB=(2)設A=奇數(shù)、B=偶數(shù),則AZ=Z,BZ=Z,AB=Z三、 歸納小結(jié)(略)四、 作業(yè)布置1、 書面作業(yè):P13習題1.1,第6-12題2、 提高內(nèi)容:(1) 已知X=x|x2+px+q=0,p2-4q0,A=1,3,5,7,9,B=1,4,7,10,且,試求p、q;(2) 集合A=x|x2+px-2=0,B=x|x2-x+q=0,若AB=-2,0,1,求p、q;(3) A=2,3,a2+4a+2,B=0,7,a2+4a-2,2-a,且AB =3,7,求B- 1.請仔細閱讀文檔,確保文檔完整性,對于不預覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領(lǐng)!既往收益都歸您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高中數(shù)學 1.1.3 集合的基本運算教案 新人教B版必修1 2019 2020 年高 數(shù)學 1.1 集合 基本 運算 教案 新人 必修
鏈接地址:http://italysoccerbets.com/p-2385306.html