基于ANSYS變速器齒輪傳動機構(gòu)有限元分析
基于ANSYS變速器齒輪傳動機構(gòu)有限元分析,基于,ansys,變速器,齒輪,傳動,機構(gòu),有限元分析
畢 業(yè) 設(shè) 計(論 文)外 文 參 考 資 料 及 譯 文
譯文題目: Design Principle of Series (Electrical Coupling) Hybrid Electric Drive Train
串聯(lián)式混合電動傳動系統(tǒng)設(shè)計原理
學(xué)生姓名
專 業(yè)
所在學(xué)院
指導(dǎo)教師
職 稱
說明:
要求學(xué)生結(jié)合畢業(yè)設(shè)計(論文)課題參閱一篇以上的外文資料,并翻譯至少一萬印刷符(或譯出3千漢字)以上的譯文。譯文原則上要求打印(如手寫,一律用400字方格稿紙書寫),連同學(xué)校提供的統(tǒng)一封面及英文原文裝訂,于畢業(yè)設(shè)計(論文)工作開始后2周內(nèi)完成,作為成績考核的一部分。
Design Principle of Series (Electrical Coupling) Hybrid Electric Drive Train
The concept of a series hybrid electric drive train was developed from the EV drive train.1 As mentioned in Chapter 4, EVs, compared with conventional gasoline- or diesel-fueled vehicles, have the advantages of zero mobile pollutant emissions, multienergy sources, and high efficiency. However, EVs using present technologies have some disadvantages: a limited drive range due to the shortage of energy storage in the on-board batteries, limited payload and volume capacity due to heavy and bulky batteries, and long battery charging time. The initial objective of developing a series HEV was aimed at extending the drive range by adding an engine/alternator system to charge the batteries on-board.
A typical series hybrid electric drive train configuration is shown in Figure 7.1. The vehicle is propelled by a traction motor. The traction motor is powered by a battery pack and/or an engine/generator unit. The powers of both power sources are merged together in a power electronics-based and controllable electrical coupling device. Many operation modes are available to choose, according to the power demands of the driver and the operation status of the drive train system.
Vehicle performance (in terms of acceleration, gradeability, and maximum speed) is completely determined by the size and characteristics of the traction motor drive. Motor power capability and transmission design are the same as in the EV design discussed in Chapter 4. However, the drive train control is essentially different from the pure electric drive train due to the involvement of the additional engine/generator unit. This chapter will focus on the design principles of the engine/alternator system, the drive train control, and the energy and power capacity of the battery pack. In this chapter, the term “peak power source” will replace “battery pack” because, in HEVs, the major function of the batteries is to supply peaking power and they can be replaced with other kinds of sources such as ultracapacitors, flywheels, or combinations.
7.1 Operation Patterns
In series hybrid electric drive trains, the engine/generator system is mechanically decoupled from the driven wheels as shown in Figure 7.1. The speed and torque of the engine are independent of vehicle speed and traction torque demand, and can be controlled to any operating point on its speed- torque plane.2,3 Generally, the engine should be controlled in such a way that it always operates in its optimal operation region, where fuel consumption and emissions of the engine are minimized (see Figure 7.2). Due to the mechanical decoupling of the engine from the driven wheels, this optimal engine operation is realizable. However, it heavily depends on the operating modes and control strategy of the drive train.
The drive train has several operating modes, which can be used selectively according to the driving conditions and wish of the driver. These operating modes are as follows:
1. Hybrid traction mode: When a large amount of power is demanded, that is, the driver depresses the accelerator pedal deeply, both engine/generator and peaking power source (PPS) supply their powers to the electric motor drive. In this case, the engine should be controlled to operate in its optimal region for efficiency and emission reasons as shown in Figure 7.2. The PPS supplies the additional power to meet the traction power demand. This operation mode can be expressed as
Pdemand = Pe/g + Ppps, (7.1)
where Pdemand is the power demanded by the driver, Pe/g is the engine/generator power, and Ppps is the PPS power.
Peak power source-alone traction mode: In this operating mode, the peak power source alone supplies its power to meet the power demand, that is,
Pdemand = Ppps. (7.2)
1. Engine/generator-alone traction mode: In this operating mode, the engine/generator alone supplies its power to meet the power demand, that is,
Pdemand = Pe/g. (7.3)
2. PPS charging from the engine/generator: When the energy in the PPS decreases to a bottom line, the PPS must be charged. This can be done by regenerative braking or by the engine/generator. Usually, engine/generator charging is needed, since regenerative braking charging is insufficient. In this case, the engine/generator power is divided into two parts: one to propel the vehicle and the other to charge the PPS. That is,
Pdemand = Pe/g + Ppps. (7.4)
It should be noticed that the operation mode is only effective when the power of the engine/generator is greater than the load power demand. It should be noted that PPS power is given a negative sign when it is being charged.
1. Regenerative braking mode: When the vehicle is braking, the traction motor can be used as a generator, converting part of the kinetic energy of the vehicle mass into electric energy to charge the PPS.
2. As shown in Figure 7.1, the vehicle controller commands the operation of each component according to the traction power (torque) command from the driver, the feedback from each of the components, and also the drive train and the preset control strategy. The control objectives are to (1) meet the power demand of the driver, (2) operate each component with optimal efficiency,
(3) recapture braking energy as much as possible, and (4) maintain the state of charge (SOC) of the PPS in a preset window.
7.1 Control Strategies
A control strategy is a control rule that is preset in the vehicle controller and commands the operation of each component. The vehicle controller receives operation commands from the driver and feedback from the drive train and all the components, and then makes decisions to use proper operation modes. Obviously, the performance of the drive train relies mainly on control quality, in which control strategy plays a crucial role.
In practice, there are a number of control strategies that can be employed in a drive train for vehicles with different mission requirements. In this chapter, two typical control strategies are introduced: (1) maximum state-of-charge of peaking power source (Max. SOC-of-PPS) and (2) engine turn-on and turn-off (engine on/off) or thermostat control strategies.4
7.2.1Max. SOC-of-PPS Control Strategy
The target of this control strategy is to meet the power demand commanded by the driver and, at the same time, maintain the SOC of the PPS at its high level. The engine/generator is the primary power source, and the PPS is the secondary source. This control strategy is considered to be the proper design for vehicles in which performance (speed, acceleration, gradeability, etc.) is the first concern, such as vehicles with frequent stop–go driving patterns and military vehicles in which carrying out their mission is the most important objective. A high SOC level in the PPS will guarantee the high performance of vehicles at any time.
The Max. SOC-of-PPS control strategy is depicted in Figure 7.3, in which points A, B, C, and D represent the power demands that the driver commanded in either traction mode or braking mode. Point A represents the commanded traction power that is greater than the power that the engine/generator can produce. In this case, the PPS must produce its power to make up the power shortage of the engine/generator. Point B represents the commanded power that is less than the power that the engine/generator produces when operating in its optimal operation region (refer to Figure 7.2). In this case, two operating modes may be used, depending on the SOC level of the PPS. If the SOC of the PPS is below its top line, such as less than 70%, the engine/generator is operated with full load. (The operating point of the engine/generator with full load depends on the engine/generator design. For details, see the next section.) Part of its power goes to the traction motor to propel the vehicle and the other part goes to the PPS to increase the energy level. On the other hand, if the SOC of the PPS has reached its top line, the engine/generator traction mode alone is supplied, that is, the engine/generator is controlled to produce power equal to the demanded power, and the PPS is set at idle. Point C represents the commanded braking power that is greater than the braking power the motor can produce (maximum regenerative braking power). In this case, a hybrid braking mode is used, in which the electric motor produces its maximum braking power and the mechanical braking system produces the remaining braking power. Point D represents the commanded braking power that is less than the maximum braking power that the motor can produce. In this case, only regenerative braking is used. The control flowchart of the Max. SOC-of-PPS is illustrated in Figure 7.4.
7.2.2Engine On–Off or Thermostat Control Strategy
The Max. SOC-of-PPS control strategy emphasizes maintaining the SOC of the PPS at a high level. However, in some driving conditions, such as driving for a long time (with a low load) on a highway at constant speed, the PPS can be easily charged to its full level, and the engine/generator is forced to operate with power output smaller than its optimum. Hence, the efficiency of the drive train is reduced. In this case, the engine on–off or thermostat control strategy would be appropriate. This control strategy is illustrated in Figure 7.5. The operation of the engine/generator is completely controlled by the SOC of the PPS. When the SOC of the PPS reaches its preset top line, the engine/generator is turned off and the vehicle is propelled only by the PPS. On the other hand, when the SOC of the PPS reaches its bottom line, the engine/generator is turned on. The PPS gets its charging from the engine/generator. In this way, the engine can be always operated within its optimal deficiency region.
串聯(lián)式混合電動傳動系統(tǒng)設(shè)計原理
一系列混合動力傳動系統(tǒng)的概念是從電動汽車的動力傳動系統(tǒng)開發(fā)。1是在4章提到的電動汽車,與傳統(tǒng)的汽油或柴油為燃料的車輛相比,有優(yōu)勢零污染排放方面不斷移動,多能量源,效率高。然而,電動汽車的使用目前的技術(shù)有一些缺點:有限的驅(qū)動范圍由于缺乏EN在車載電池的能量存儲,有限的負載和容量由于笨重的電池,電池充電時間長。開發(fā)一系列混合動力電動汽車的初步目標是通過增加發(fā)動機/交流發(fā)電機系統(tǒng)來充電的驅(qū)動范圍,以收取電池板。
圖7.1所示為典型的串聯(lián)混合動力驅(qū)動列車配置。車輛由牽引電機驅(qū)動。牽引電機由電池組和/或發(fā)動機/屬Tor的單位。兩種電源的功率被合并在一個電力電子為基礎(chǔ)的和可控的電氣耦合裝置。許多操作模式可供選擇,根據(jù)驅(qū)動系統(tǒng)的功率需求及驅(qū)動系統(tǒng)的運行狀態(tài)。
車輛性能(以加速度、爬坡能力、最大速度)完全由Trac的大小和特點決定的,電機驅(qū)動。電機功率和反式任務(wù)設(shè)計與第4章中討論的電動汽車設(shè)計是一樣的。然而,傳動控制是從純電力驅(qū)動列車由于加介入本質(zhì)的不同傳統(tǒng)的發(fā)動機/發(fā)電機組。本章將重點放在發(fā)動機/發(fā)電機系統(tǒng)的設(shè)計原理、傳動系統(tǒng)和控制,以及電池組的能量和功率容量。在這章,“峰值功率源”將取代“電池組”,因為,在混合動力汽車中,電池的主要功能是提供峰值功率,他們可以與其他種源代替如超級電容器、飛輪、或組合。
圖7.1典型的串聯(lián)混合動力電動傳動系統(tǒng)的配置。
7.1運行模式
在串聯(lián)式混合動力電動傳動系統(tǒng)中,發(fā)動機/發(fā)電機系統(tǒng)與從動輪機械解耦,如圖7.1所示。發(fā)動機的轉(zhuǎn)速和扭矩是獨立的汽車樂的牽引力和速度的扭矩需求,并可以控制任何操作點的速度-轉(zhuǎn)矩平面。一般來說,發(fā)動機應(yīng)在這樣一種方式,它始終運行在其控制的最佳的操作區(qū)域,在燃料消耗的發(fā)動機和排放最小化(見圖7.2)。由于發(fā)動機的機械解耦從驅(qū)動車輪,這種優(yōu)化工程運行是可以實現(xiàn)的。然而,它很大程度上取決于驅(qū)動列車的運行模式和控制策略。
驅(qū)動列車具有多種運行模式,可根據(jù)駕駛條件和駕駛?cè)说囊庠高M行選擇。這些操作模式如下:
1.混合動力牽引模式:當大量的電源要求,即駕駛員踩下油門踏板的深入,發(fā)動機/發(fā)電機和調(diào)峰電源(PPS)供應(yīng)他們的T電動馬達驅(qū)動。在這種情況下,發(fā)動機應(yīng)控制操作效率和排放的最佳區(qū)域等原因,如圖7.2所示。PPS提供額外電力,以滿足電力需求。這種操作模式可以表示為 Pdemand = Pe/g + Ppps, (7.1)
圖7.2發(fā)動機特性和最佳運行區(qū)域的例子。
在Pdemand是駕駛員所要求的功率,PE/G是發(fā)動機/發(fā)電機的功率,和購買力平價是PPS電源。
2. 峰值功率源單獨牽引模式:在這種運行模式下,峰值功率源單獨提供它的功率,以滿足電力需求,即
Pdemand = Ppps. (7.2)
3. 發(fā)動機/發(fā)電機單獨牽引模式:在這種工作模式下,發(fā)動機/發(fā)電機單獨供電,以滿足電力需求,即
Pdemand = Pe/g. (7.3)
4. PPS從發(fā)動機/發(fā)電機充電:當能量在PPS下降到一個底線,PPS必須充電。這可以通過再生制動或發(fā)動機/發(fā)電機。通常,恩發(fā)動機/發(fā)電機充電是必要的,因為再生制動充電不足。在這種情況下,發(fā)動機/發(fā)電機功率分為2個部分:一是推動車輛和其他的費PPS。那是
Pdemand = Pe/g + Ppps. (7.4)
應(yīng)該注意的是,在發(fā)動機/發(fā)電機的功率大于負載功率時,該操作模式是有效的需求。值得注意的是,PPS功率為負號時正在充電。
5. 再生制動模式:當車輛制動、牽引電機作為發(fā)電機,將汽車的質(zhì)量部分動能轉(zhuǎn)化為電能充電的PPS。
如圖7.1所示,車輛控制器命令每個組件的操作,根據(jù)牽引功率(轉(zhuǎn)矩)命令從驅(qū)動程序,從每個組件的反饋,和也有驅(qū)動列車和預(yù)置控制策略??刂颇繕耸牵海?)滿足驅(qū)動程序的功率需求,(2)操作每一個組件的最佳效率,(3)奪回制動能量盡可能多的,和(4)保持充電狀態(tài)(SOC)在預(yù)置窗口的PPS。
7.2控制策略
控制策略是在車輛控制器中預(yù)先設(shè)定的控制規(guī)則,并命令每個組件的操作。車輛控制器從驅(qū)動和反饋接收操作命令A(yù)CK從傳動和所有組件,然后決定使用適當?shù)牟僮髂J?。顯然,對傳動系統(tǒng)的性能主要取決于控制質(zhì)量,即控制策略發(fā)揮了至關(guān)重要的作用。
在實踐中,有一個控制策略,可以采用不同的任務(wù)要求的車輛的驅(qū)動列車。在這一章中,介紹了兩種典型控制策略方法:(1)對調(diào)峰電源充電最大狀態(tài)(PPS最大SOC)和(2)發(fā)動機的開啟和關(guān)閉(發(fā)動機開/關(guān))或恒溫控制策略。
7.2.1 PPS最大的SOC控制策略
這種控制策略的目標是滿足電力需求的驅(qū)動控制,同時保持高水平的PPS的SOC。發(fā)動機/發(fā)電機是最主要的動力源,和PPS是次要來源。該控制策略是合理設(shè)計車輛的性能(速度、加速度、爬坡能力等)是第一個關(guān)注如車輛頻繁停車,去駕駛模式和軍用車輛,其中執(zhí)行任務(wù)是最重要的目標。在PPS高SOC將保證高水平車輛在任何時間的性能。
最大的SOC PPS控制策略如圖7.3所示,其中分A、B、C、D代表的權(quán)力要求司機COM要求在牽引或制動模式。點代表著指揮牽引力,這是比功率更大的力量發(fā)動機/發(fā)電機可以產(chǎn)生。在這種情況下,PPS必須彌補發(fā)動機/發(fā)電機的電力短缺,電力。點乙代表的命令的權(quán)力,是小于的權(quán)力當發(fā)動機/發(fā)電機在其最佳運行區(qū)域(參見圖7.2)時產(chǎn)生。在這種情況下,兩種操作模式可以使用,根據(jù)PPS的SOC水平。如果是系統(tǒng)芯片F(xiàn) PPS低于頂線,如小于70%,發(fā)動機/發(fā)電機滿負荷運行。(發(fā)動機/發(fā)電機與滿負荷的工作點取決于發(fā)動機/發(fā)電機IGN。有關(guān)詳細信息,請參閱下一節(jié)。)其動力部分去牽引電機來驅(qū)動車輛,另一部分是PPS增加能量水平。另一方面,如果是OC的PPS已經(jīng)達到了它的頂線,發(fā)動機/發(fā)電機單獨供電的牽引模式,即發(fā)動機/發(fā)電機控制產(chǎn)生的功率等于所要求的功率,和PPS的閑置的。C點代表吩咐制動功率大于制動功率的電機可以產(chǎn)生(馬克斯imum再生制動功率)。在這種情況下,混合制動模式是美國SED,其中電機產(chǎn)生的最大制動功率和機械制動系統(tǒng)產(chǎn)生的剩余的制動功率。點三維代表的命令制動功率是少電機可以產(chǎn)生的最大制動功率。在這種情況下,使用再生制動。的最大SOC PPS的控制流程圖如圖7.4所示。
圖7.3最大的PPS SOC控制策略圖。
發(fā)動機/發(fā)電機可以產(chǎn)生。在這種情況下,PPS必須彌補發(fā)動機/發(fā)電機的電力短缺,電力。點乙代表的命令的權(quán)力,是小于的權(quán)力當發(fā)動機/發(fā)電機在其最佳運行區(qū)域(參見圖7.2)時產(chǎn)生。在這種情況下,兩種操作模式可以使用,根據(jù)PPS的SOC水平。如果是系統(tǒng)芯片F(xiàn) PPS低于頂線,如小于70%,發(fā)動機/發(fā)電機滿負荷運行。(發(fā)動機/發(fā)電機與滿負荷的工作點取決于發(fā)動機/發(fā)電機IGN。有關(guān)詳細信息,請參閱下一節(jié)。)其動力部分去牽引電機來驅(qū)動車輛,另一部分是PPS增加能量水平。另一方面,如果是OC的PPS已經(jīng)達到了它的頂線,發(fā)動機/發(fā)電機單獨供電的牽引模式,即發(fā)動機/發(fā)電機控制產(chǎn)生的功率等于所要求的功率,和PPS的閑置的。C點代表吩咐制動功率大于制動功率的電機可以產(chǎn)生(馬克斯imum再生制動功率)。在這種情況下,混合制動模式是美國SED,其中電機產(chǎn)生的最大制動功率和機械制動系統(tǒng)產(chǎn)生的剩余的制動功率。點三維代表的命令制動功率是少電機可以產(chǎn)生的最大制動功率。在這種情況下,使用再生制動。的最大SOC PPS的控制流程圖如圖7.4所示。
7.2.2發(fā)動機,或溫控器控制策略
他最大的SOC PPS控制策略強調(diào)維持在較高水平的PPS的SOC。然而,在一些駕駛條件,如駕駛很長一段時間(與低負荷)對恒速公路,PPS可以輕松充電到滿級,和發(fā)動機/發(fā)電機是被迫與輸出功率小于其優(yōu)化媽媽因此,駕駛火車的效率降低。在這種情況下,發(fā)動機上的或溫控器的控制策略將是適當?shù)摹4丝刂撇呗匀鐖D7.5所示。哦該發(fā)動機/發(fā)電機運行完全由PPS的SOC控制。當PPS的SOC達到其設(shè)定的頂線,發(fā)動機/發(fā)電機關(guān)閉,車輛推進只有PPS。另一方面,當PPS的SOC達到底線,發(fā)動機/發(fā)電機接通。PPS從發(fā)動機/發(fā)電機的充電。這樣,發(fā)動機就可以了電子始終在其最佳的不足區(qū)域內(nèi)運行。
圖7.4最大的SOC PPS控制策略控制流程圖。
圖7.5溫控器控制圖。
收藏