數(shù)學(xué)排列組合公式.doc
《數(shù)學(xué)排列組合公式.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《數(shù)學(xué)排列組合公式.doc(10頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
公式P是指排列,從N個(gè)元素取R個(gè)進(jìn)行排列。公式C是指組合,從N個(gè)元素取R個(gè),不進(jìn)行排列。N-元素的總個(gè)數(shù) R參與選擇的元素個(gè)數(shù) !-階乘 ,如9!9*8*7*6*5*4*3*2*1從N倒數(shù)r個(gè),表達(dá)式應(yīng)該為n*(n-1)*(n-2).(n-r+1); 因?yàn)閺膎到(n-r+1)個(gè)數(shù)為n(n-r+1)r舉例:Q1:有從1到9共計(jì)9個(gè)號(hào)碼球,請(qǐng)問,可以組成多少個(gè)三位數(shù)?A1: 123和213是兩個(gè)不同的排列數(shù)。即對(duì)排列順序有要求的,既屬于“排列P”計(jì)算范疇。 上問題中,任何一個(gè)號(hào)碼只能用一次,顯然不會(huì)出現(xiàn)988,997之類的組合, 我們可以這么看,百位數(shù)有9種可能,十位數(shù)則應(yīng)該有9-1種可能,個(gè)位數(shù)則應(yīng)該只有9-1-1種可能,最終共有9*8*7個(gè)三位數(shù)。計(jì)算公式P(3,9)9*8*7,(從9倒數(shù)3個(gè)的乘積)Q2: 有從1到9共計(jì)9個(gè)號(hào)碼球,請(qǐng)問,如果三個(gè)一組,代表“三國聯(lián)盟”,可以組合成多少個(gè)“三國聯(lián)盟”?A2: 213組合和312組合,代表同一個(gè)組合,只要有三個(gè)號(hào)碼球在一起即可。即不要求順序的,屬于“組合C”計(jì)算范疇。 上問題中,將所有的包括排列數(shù)的個(gè)數(shù)去除掉屬于重復(fù)的個(gè)數(shù)即為最終組合數(shù)C(3,9)=9*8*7/3*2*1排列、組合的概念和公式典型例題分析 例1 設(shè)有3名學(xué)生和4個(gè)課外小組(1)每名學(xué)生都只參加一個(gè)課外小組;(2)每名學(xué)生都只參加一個(gè)課外小組,而且每個(gè)小組至多有一名學(xué)生參加各有多少種不同方法? 解(1)由于每名學(xué)生都可以參加4個(gè)課外小組中的任何一個(gè),而不限制每個(gè)課外小組的人數(shù),因此共有 種不同方法 (2)由于每名學(xué)生都只參加一個(gè)課外小組,而且每個(gè)小組至多有一名學(xué)生參加,因此共有 種不同方法 點(diǎn)評(píng) 由于要讓3名學(xué)生逐個(gè)選擇課外小組,故兩問都用乘法原理進(jìn)行計(jì)算 例2 排成一行,其中 不排第一, 不排第二, 不排第三, 不排第四的不同排法共有多少種? 解 依題意,符合要求的排法可分為第一個(gè)排 、 、 中的某一個(gè),共3類,每一類中不同排法可采用畫“樹圖”的方式逐一排出: 符合題意的不同排法共有9種 點(diǎn)評(píng) 按照分“類”的思路,本題應(yīng)用了加法原理為把握不同排法的規(guī)律,“樹圖”是一種具有直觀形象的有效做法,也是解決計(jì)數(shù)問題的一種數(shù)學(xué)模型 例判斷下列問題是排列問題還是組合問題?并計(jì)算出結(jié)果 (1)高三年級(jí)學(xué)生會(huì)有11人:每兩人互通一封信,共通了多少封信?每兩人互握了一次手,共握了多少次手? (2)高二年級(jí)數(shù)學(xué)課外小組共10人:從中選一名正組長和一名副組長,共有多少種不同的選法?從中選2名參加省數(shù)學(xué)競賽,有多少種不同的選法? (3)有2,3,5,7,11,13,17,19八個(gè)質(zhì)數(shù):從中任取兩個(gè)數(shù)求它們的商可以有多少種不同的商?從中任取兩個(gè)求它的積,可以得到多少個(gè)不同的積? (4)有8盆花:從中選出2盆分別給甲乙兩人每人一盆,有多少種不同的選法?從中選出2盆放在教室有多少種不同的選法? 分析(1)由于每人互通一封信,甲給乙的信與乙給甲的信是不同的兩封信,所以與順序有關(guān)是排列;由于每兩人互握一次手,甲與乙握手,乙與甲握手是同一次握手,與順序無關(guān),所以是組合問題其他類似分析 (1)是排列問題,共用了 封信;是組合問題,共需握手 (次) (2)是排列問題,共有 (種)不同的選法;是組合問題,共有 種不同的選法 (3)是排列問題,共有 種不同的商;是組合問題,共有 種不同的積 (4)是排列問題,共有 種不同的選法;是組合問題,共有 種不同的選法 例證明 證明 左式 右式 等式成立 點(diǎn)評(píng)這是一個(gè)排列數(shù)等式的證明問題,選用階乘之商的形式,并利用階乘的性質(zhì) ,可使變形過程得以簡化 例5化簡 解法一原式 解法二原式 點(diǎn)評(píng) 解法一選用了組合數(shù)公式的階乘形式,并利用階乘的性質(zhì);解法二選用了組合數(shù)的兩個(gè)性質(zhì),都使變形過程得以簡化 例6解方程:(1) ;(2) 解 (1)原方程 解得 (2)原方程可變?yōu)?, , 原方程可化為 即 ,解得 第六章排列組合、二項(xiàng)式定理 一、考綱要求 1.掌握加法原理及乘法原理,并能用這兩個(gè)原理分析解決一些簡單的問題.2.理解排列、組合的意義,掌握排列數(shù)、組合數(shù)的計(jì)算公式和組合數(shù)的性質(zhì),并能用它們解決一些簡單的問題.3.掌握二項(xiàng)式定理和二項(xiàng)式系數(shù)的性質(zhì),并能用它們計(jì)算和論證一些簡單問題.二、知識(shí)結(jié)構(gòu)三、知識(shí)點(diǎn)、能力點(diǎn)提示 (一)加法原理乘法原理說明加法原理、乘法原理是學(xué)習(xí)排列組合的基礎(chǔ),掌握此兩原理為處理排 列、組合中有關(guān)問題提供了理論根據(jù).例15位高中畢業(yè)生,準(zhǔn)備報(bào)考3所高等院校,每人報(bào)且只報(bào)一所,不同的報(bào)名方法共有多少種?解:5個(gè)學(xué)生中每人都可以在3所高等院校中任選一所報(bào)名,因而每個(gè)學(xué)生都有3種不同的 報(bào)名方法,根據(jù)乘法原理,得到不同報(bào)名方法總共有33333=35(種)(二)排列、排列數(shù)公式說明排列、排列數(shù)公式及解排列的應(yīng)用題,在中學(xué)代數(shù)中較為獨(dú)特,它研 究的對(duì)象以及研 究問題的方法都和前面掌握的知識(shí)不同,內(nèi)容抽象,解題方法比較靈活,歷屆高考主要考查排列的應(yīng)用題,都是選擇題或填空題考查.例2由數(shù)字1、2、3、4、5組成沒有重復(fù)數(shù)字的五位數(shù),其中小于50 000的 偶數(shù)共有()A.60個(gè)B.48個(gè)C.36個(gè)D.24個(gè)解因?yàn)橐笫桥紨?shù),個(gè)位數(shù)只能是2或4的排法有P12;小于50 000的五位數(shù),萬位只能是1、3或2、4中剩下的一個(gè)的排法有P13;在首末兩位數(shù)排定后,中間3個(gè)位數(shù)的排法有P33,得P13P33P1236(個(gè))由此可知此題應(yīng)選C.例3將數(shù)字1、2、3、4填入標(biāo)號(hào)為1、2、3、4的四個(gè)方格里,每格填一個(gè)數(shù)字,則每個(gè)方格的標(biāo)號(hào)與所填的數(shù)字均不同的填法有多少種?解:將數(shù)字1填入第2方格,則每個(gè)方格的標(biāo)號(hào)與所填的數(shù)字均不相同的填法有3種,即214 3,3142,4123;同樣將數(shù)字1填入第3方格,也對(duì)應(yīng)著3種填法;將數(shù)字1填入第4方格,也對(duì)應(yīng)3種填法,因此共有填法為3P13=9(種).- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
32 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 數(shù)學(xué) 排列組合 公式
鏈接地址:http://italysoccerbets.com/p-1559898.html