高考數(shù)學大二輪總復習與增分策略 專題三 三角函數(shù)、解三角形與平面向量 第3講 平面向量練習 文
《高考數(shù)學大二輪總復習與增分策略 專題三 三角函數(shù)、解三角形與平面向量 第3講 平面向量練習 文》由會員分享,可在線閱讀,更多相關《高考數(shù)學大二輪總復習與增分策略 專題三 三角函數(shù)、解三角形與平面向量 第3講 平面向量練習 文(15頁珍藏版)》請在裝配圖網(wǎng)上搜索。
第3講平面向量1(2016課標全國丙改編)已知向量,則ABC_.答案30解析|1,|1,cosABC,ABC30.2(2016山東改編)已知非零向量m,n滿足4|m|3|n|,cosm,n.若n(tmn),則實數(shù)t的值為_答案4解析n(tmn),n(tmn)0,即tmnn20,t|m|n|cosm,n|n|20,由已知得t|n|2|n|20,解得t4.3(2016天津改編)已知ABC是邊長為1的等邊三角形,點D,E分別是邊AB,BC的中點,連結(jié)DE并延長到點F,使得DE2EF,則的值為_答案解析如圖所示,.又D,E分別為AB,BC的中點,且DE2EF,所以,所以.又,則()2222.又|1,BAC60,故11.4(2016浙江)已知向量a,b,|a|1,|b|2.若對任意單位向量e,均有|ae|be|,則ab的最大值是_答案解析由已知可得:|ae|be|aebe|(ab)e|,由于上式對任意單位向量e都成立|ab|成立6(ab)2a2b22ab12222ab.即652ab,ab.1.考查平面向量的基本定理及基本運算,多以熟知的平面圖形為背景進行考查,多為填空題,難度中低檔.2.考查平面向量的數(shù)量積,以填空題為主,難度低;向量作為工具,還常與三角函數(shù)、解三角形、不等式、解析幾何結(jié)合,以解答題形式出現(xiàn).熱點一平面向量的線性運算1在平面向量的化簡或運算中,要根據(jù)平面向量基本定理選好基底,變形要有方向不能盲目轉(zhuǎn)化2在用三角形加法法則時,要保證“首尾相接”,結(jié)果向量是第一個向量的起點指向最后一個向量終點所得的向量;在用三角形減法法則時,要保證“同起點”,結(jié)果向量的方向是指向被減向量例1(1)設0,向量a(sin 2,cos ),b(cos ,1),若ab,則tan _.(2)如圖,在ABC中,已知2,以向量,向量作為基底,則向量可表示為_答案(1)(2)解析(1)因為ab,所以sin 2cos2,即2sin cos cos2.因為00,得2sin cos ,tan .(2)根據(jù)平面向量的運算法則及已知圖形可知().思維升華(1)對于平面向量的線性運算,要先選擇一組基底;同時注意共線向量定理的靈活運用(2)運算過程中重視數(shù)形結(jié)合,結(jié)合圖形分析向量間的關系跟蹤演練1(1)如圖,正方形ABCD中,點E是DC的中點,點F是BC的一個三等分點,那么以向量和向量為基底,向量可表示為_(2)如圖,在正方形ABCD中,E為DC的中點,若,則的值為_答案(1)(2)解析(1)在CEF中,有.因為點E為DC的中點,所以.因為點F為BC的一個三等分點,所以.所以.(2)因為E為DC的中點,所以,即,所以,1,所以.熱點二平面向量的數(shù)量積1數(shù)量積的定義:ab|a|b|cos .2三個結(jié)論(1)若a(x,y),則|a|.(2)若A(x1,y1),B(x2,y2),則|.(3)若a(x1,y1),b(x2,y2),為a與b的夾角,則cos .例2(1)如圖,在矩形ABCD中,AB,BC2,點E為BC的中點,點F在邊CD上,若,則的值是_(2)若b,|a|2|b|,且(ab)b2,則向量a,b的夾角為_答案(1)(2)解析(1)以A為原點,建立如圖所示的坐標系,可得A(0,0),B(,0),E(,1),F(xiàn)(x,2),(,0),(x,2),x,解得x1,F(xiàn)(1,2)(,1),(1,2),(1)12.(2)b2cos2cos2cos2sin21,所以|b|1,|a|2.由(ab)b2,可得abb22,故ab,故cosa,b.又a,b0,所以a,b.思維升華(1)數(shù)量積的計算通常有三種方法:數(shù)量積的定義,坐標運算,數(shù)量積的幾何意義;(2)可以利用數(shù)量積求向量的模和夾角,向量要分解成題中模和夾角已知的向量進行計算跟蹤演練2(1)已知點A,B,C,D在邊長為1的方格點圖的位置如圖所示,則向量在方向上的投影為_(2)如圖,在ABC中,ABAC3,cosBAC,2,則的值為_答案(1)(2)2解析(1)不妨以點A為坐標原點,建立如圖所示的平面直角坐標系,易得(2,3),(4,2),所以向量在方向上的投影為.(2)()()()()()226132.熱點三平面向量與三角函數(shù)平面向量作為解決問題的工具,具有代數(shù)形式和幾何形式的“雙重型”,高考常在平面向量與三角函數(shù)的交匯處命題,通過向量運算作為題目條件例3已知函數(shù)f(x)2cos2x2sin xcos x(xR)(1)當x0,)時,求函數(shù)f(x)的單調(diào)遞增區(qū)間;(2)設ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且c3,f(C)2,若向量m(1,sin A)與向量n(2,sin B)共線,求a,b的值解(1)f(x)2cos2xsin 2xcos 2xsin 2x12sin(2x)1,令2k2x2k,kZ,解得kxk,kZ,因為x0,),所以f(x)的單調(diào)遞增區(qū)間為0,(2)由f(C)2sin(2C)12,得sin(2C),而C(0,),所以2C(,),所以2C,解得C.因為向量m(1,sin A)與向量n(2,sin B)共線,所以.由正弦定理得,由余弦定理得c2a2b22abcos,即a2b2ab9.聯(lián)立,解得a,b2.思維升華在平面向量與三角函數(shù)的綜合問題中,一方面用平面向量的語言表述三角函數(shù)中的問題,如利用向量平行、垂直的條件表述三角函數(shù)式之間的關系,利用向量模表述三角函數(shù)之間的關系等;另一方面可以利用三角函數(shù)的知識解決平面向量問題,在解決此類問題的過程中,只要根據(jù)題目的具體要求,在向量和三角函數(shù)之間建立起聯(lián)系,就可以根據(jù)向量或者三角函數(shù)的知識解決問題跟蹤演練3已知ABC是銳角三角形,向量m,n,且mn.(1)求AB的值;(2)若cos B,AC8,求BC的長解(1)因為mn,所以mncoscos Bsinsin Bcos0,又A,B,所以,所以AB,即AB.(2)因為cos B,B,所以sin B,所以sin Asinsin Bcoscos Bsin ,由正弦定理,得BCAC843.1如圖,在ABC中,DEBC交AC于E,BC邊上的中線AM交DE于N,設a,b,用a,b表示向量,則_.押題依據(jù)平面向量基本定理是向量表示的基本依據(jù),而向量表示(用基底或坐標)是向量應用的基礎答案(ab)解析因為DEBC,所以DNBM,則ANDAMB,所以.因為,所以.因為M為BC的中點,所以()(ab),所以(ab)2如圖,BC、DE是半徑為1的圓O的兩條直徑,2,則_.押題依據(jù)數(shù)量積是平面向量最重要的概念,平面向量數(shù)量積的運算是高考的必考內(nèi)容,和平面幾何知識的結(jié)合是向量考查的常見形式答案解析2,圓O的半徑為1,|,()()2()()201.3在ABC中,(cos 32,cos 58),(sin 60sin 118,sin 120sin 208),則ABC的面積為_押題依據(jù)平面向量作為數(shù)學解題工具,通過向量的運算給出條件解決三角函數(shù)問題已成為近幾年高考的熱點答案解析|1,所以| .則cos 32cos 28sin 32sin 28(cos 32cos 28sin 32sin 28)cos(3228)cos 60,故cos,.又,0,180,所以,60,故B180,18060120.故ABC的面積為S|sin B1sin 120.4如圖,在半徑為1的扇形AOB中,AOB60,C為弧上的動點,AB與OC交于點P,則的最小值是_押題依據(jù)本題將向量與平面幾何、最值問題等有機結(jié)合,體現(xiàn)了高考在知識交匯點命題的方向,本題解法靈活,難度適中答案解析因為,所以()2.又因為AOB60,OAOB,所以OBA60,OB1.所以|cos 120|,所以|2(|)2,當且僅當|時,取得最小值.A組專題通關1在ABC中,已知D是AB邊上一點,若2,則_.答案解析在ABC中,已知D是AB邊上一點,2,(),.2ABC是邊長為2的等邊三角形,已知向量a,b滿足2a,2ab,則下列結(jié)論正確的是_|b|1; ab;ab1; (4ab).答案解析在ABC中,由2ab2ab,得|b|2.又|a|1,所以ab|a|b|cos 1201,所以(4ab)(4ab)b4ab|b|24(1)40,所以(4ab).3在等腰ABC中,BAC90,ABAC2,2,3,則_.答案解析由已知得到()()22,ABC是等腰直角三角形,BAC90,ABAC2,所以220022.4(2016天津薊縣期中)已知向量a,b滿足(a2b)(ab)6,且|a|1,|b|2,則a與b的夾角為_答案解析設a與b的夾角為,(a2b)(ab)6,且|a|1,|b|2,1ab86,ab1|a|b|cos ,cos ,又0,.5(2016安徽江淮十校第二次聯(lián)考)已知平面向量a、b(a0,ab)滿足|a|3,且b與ba的夾角為30,則|b|的最大值為_答案6解析令a,b,則ba,如圖,b與ba的夾角為30,OBA30,|a|3,由正弦定理得,|b|6sinOAB6.6已知向量a(2,1),b(1,2),若a,b在向量c方向上的投影相等,且(ca)(cb),則向量c的坐標為_答案(,)解析設c(x,y),根據(jù)題意有解得7設向量(5cos ,4sin ),(2,0),則|的取值范圍是_答案4,6解析(3cos ,4sin ),|2(3cos )2(4sin )26cos 8sin 2610sin()26,其中tan ,16|236,4|6.8設向量a(a1,a2),b(b1,b2),定義一種向量積ab(a1b1,a2b2),已知向量m(2,),n(,0),點P(x,y)在ysin x的圖象上運動,Q是函數(shù)yf(x)圖象上的點,且滿足mn(其中O為坐標原點),則函數(shù)yf(x)的值域是_答案,解析令Q(c,d),由新的運算可得mn(2x,sin x)(,0)(2x,sin x),消去x得dsin(c),yf(x)sin(x),易知yf(x)的值域是,9設向量a(sin x,sin x),b(cos x,sin x),x0,(1)若|a|b|,求x的值;(2)設函數(shù)f(x)ab,求f(x)的最大值解(1)由|a|2(sin x)2(sin x)24sin2x,|b|2(cos x)2(sin x)21,及|a|b|,得4sin2x1.又x0,從而sin x,所以x.(2)f(x)absin xcos xsin2xsin 2xcos 2xsin(2x),當x0,時,sin(2x)取最大值1,所以f(x)的最大值為.10已知向量a(cos ,sin ),b(cos x,sin x),c(sin x2sin ,cos x2cos ),其中0x.(1)若,求函數(shù)f(x)bc的最小值及相應x的值;(2)若a與b的夾角為,且ac,求tan 2的值解(1)b(cos x,sin x),c(sin x2sin ,cos x2cos ),f(x)bccos xsin x2cos xsin sin xcos x2sin xcos 2sin xcos x(sin xcos x)令tsin xcos x,則2sin xcos xt21,且1t.則yt2t12,1t,t時,ymin,此時sin xcos x,即sin,x,x,x,x.函數(shù)f(x)的最小值為,相應x的值為.(2)a與b的夾角為,cos cos cos xsin sin xcos(x)0x,0x,x.ac,cos (sin x2sin )sin (cos x2cos )0,sin(x)2sin 20,即sin2sin 20.sin 2cos 20,tan 2.B組能力提高11已知非零單位向量a與非零向量b滿足|ab|ab|,則向量ba在向量a上的投影為_答案1解析因為|ab|ab|,所以(ab)2(ab)2,解得ab0,所以向量ba在向量a上的投影為|ba|cosa,ba|a|1.12已知點P為ABC所在平面內(nèi)一點,且滿足()(R),則直線AP必經(jīng)過ABC的_心答案垂解析()|0,與()垂直,點P在BC的高線上,即直線AP經(jīng)過ABC的垂心13若a(2,1),b(3,),若a,b為鈍角,則實數(shù)的取值范圍是_答案(,3)(3,)解析a(2,1),b(3,),ab3(2)0,得.若a,b共線,則(2)30,解得3或1.即當3時,a,b方向相反,又a,b為鈍角,則且3.14在直角坐標系xOy中,已知點A(1,1),B(2,3),C(3,2),點P(x,y)在ABC三邊圍成的區(qū)域(含邊界)上(1)若0,求|;(2)設mn(m,nR),用x,y表示mn,并求mn的最大值解(1)方法一0,又(1x,1y)(2x,3y)(3x,2y)(63x,63y),解得即(2,2),故|2.方法二0,則()()()0,()(2,2),|2.(2)mn,(x,y)(m2n,2mn),兩式相減得,mnyx.令yxt,由圖知,當直線yxt過點B(2,3)時,t取得最大值1,故mn的最大值為1.- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 高考數(shù)學大二輪總復習與增分策略 專題三 三角函數(shù)、解三角形與平面向量 第3講 平面向量練習 高考 數(shù)學 二輪 復習 策略 專題 三角函數(shù) 三角形 平面 向量 練習
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權,請勿作他用。
鏈接地址:http://italysoccerbets.com/p-11856709.html